197edt

Revision as of 09:33, 5 October 2024 by BudjarnLambeth (talk | contribs) (Intro inter harm)
← 196edt 197edt 198edt →
Prime factorization 197 (prime)
Step size 9.65459 ¢ 
Octave 124\197edt (1197.17 ¢)
Consistency limit 3
Distinct consistency limit 3

197 equal divisions of the tritave, perfect twelfth, or 3rd harmonic (abbreviated 197edt or 197ed3), is a nonoctave tuning system that divides the interval of 3/1 into 197 equal parts of about 9.65 ¢ each. Each step represents a frequency ratio of 31/197, or the 197th root of 3.

197edt can be described as approximately 124.293edo. This implies that each step of 197edt can be approximated by 7 steps of 870edo.

It is a very strong no-twos, no-fives 19-limit system.

Intervals

Steps Cents Hekts Approximate ratios
0 0 0 1/1
1 9.65 6.6
2 19.31 13.2
3 28.96 19.8
4 38.62 26.4
5 48.27 32.99 37/36
6 57.93 39.59 30/29
7 67.58 46.19
8 77.24 52.79 23/22
9 86.89 59.39 41/39
10 96.55 65.99
11 106.2 72.59
12 115.86 79.19 31/29, 46/43
13 125.51 85.79 43/40
14 135.16 92.39 40/37
15 144.82 98.98 62/57
16 154.47 105.58 47/43
17 164.13 112.18 11/10
18 173.78 118.78 21/19
19 183.44 125.38 10/9
20 193.09 131.98 19/17
21 202.75 138.58
22 212.4 145.18 26/23
23 222.06 151.78 58/51
24 231.71 158.38
25 241.36 164.97 23/20, 54/47
26 251.02 171.57
27 260.67 178.17 43/37
28 270.33 184.77
29 279.98 191.37 47/40
30 289.64 197.97 13/11
31 299.29 204.57 44/37
32 308.95 211.17 49/41
33 318.6 217.77
34 328.26 224.37 52/43
35 337.91 230.96 62/51
36 347.57 237.56 11/9
37 357.22 244.16
38 366.87 250.76 21/17, 47/38
39 376.53 257.36 41/33, 46/37
40 386.18 263.96
41 395.84 270.56 49/39
42 405.49 277.16 43/34
43 415.15 283.76 47/37
44 424.8 290.36 23/18
45 434.46 296.95 9/7
46 444.11 303.55
47 453.77 310.15 13/10
48 463.42 316.75 17/13
49 473.08 323.35
50 482.73 329.95 37/28
51 492.38 336.55
52 502.04 343.15
53 511.69 349.75
54 521.35 356.35
55 531 362.94
56 540.66 369.54 41/30
57 550.31 376.14
58 559.97 382.74 47/34
59 569.62 389.34 57/41
60 579.28 395.94
61 588.93 402.54 52/37
62 598.58 409.14 41/29
63 608.24 415.74 27/19
64 617.89 422.34 10/7
65 627.55 428.93
66 637.2 435.53 13/9
67 646.86 442.13
68 656.51 448.73 19/13
69 666.17 455.33
70 675.82 461.93 34/23
71 685.48 468.53 49/33
72 695.13 475.13
73 704.79 481.73
74 714.44 488.32
75 724.09 494.92 41/27
76 733.75 501.52
77 743.4 508.12 43/28, 63/41
78 753.06 514.72 17/11
79 762.71 521.32
80 772.37 527.92
81 782.02 534.52 11/7
82 791.68 541.12 30/19, 49/31
83 801.33 547.72 27/17
84 810.99 554.31
85 820.64 560.91
86 830.3 567.51 21/13
87 839.95 574.11
88 849.6 580.71 49/30
89 859.26 587.31 23/14
90 868.91 593.91 38/23
91 878.57 600.51
92 888.22 607.11
93 897.88 613.71
94 907.53 620.3 49/29
95 917.19 626.9
96 926.84 633.5
97 936.5 640.1
98 946.15 646.7 19/11
99 955.8 653.3 33/19
100 965.46 659.9
101 975.11 666.5
102 984.77 673.1
103 994.42 679.7
104 1004.08 686.29
105 1013.73 692.89
106 1023.39 699.49
107 1033.04 706.09 69/38
108 1042.7 712.69 42/23
109 1052.35 719.29
110 1062.01 725.89
111 1071.66 732.49 13/7
112 1081.31 739.09
113 1090.97 745.69 62/33
114 1100.62 752.28 17/9
115 1110.28 758.88 19/10
116 1119.93 765.48 21/11
117 1129.59 772.08
118 1139.24 778.68
119 1148.9 785.28 33/17
120 1158.55 791.88 41/21
121 1168.21 798.48
122 1177.86 805.08
123 1187.52 811.68
124 1197.17 818.27
125 1206.82 824.87
126 1216.48 831.47
127 1226.13 838.07 69/34
128 1235.79 844.67
129 1245.44 851.27 39/19
130 1255.1 857.87
131 1264.75 864.47 27/13
132 1274.41 871.07
133 1284.06 877.66 21/10
134 1293.72 884.26 19/9
135 1303.37 890.86
136 1313.02 897.46
137 1322.68 904.06 58/27
138 1332.33 910.66 41/19
139 1341.99 917.26
140 1351.64 923.86
141 1361.3 930.46
142 1370.95 937.06
143 1380.61 943.65
144 1390.26 950.25
145 1399.92 956.85
146 1409.57 963.45
147 1419.23 970.05
148 1428.88 976.65
149 1438.53 983.25 39/17, 62/27
150 1448.19 989.85 30/13
151 1457.84 996.45
152 1467.5 1003.05 7/3
153 1477.15 1009.64 54/23
154 1486.81 1016.24
155 1496.46 1022.84
156 1506.12 1029.44
157 1515.77 1036.04
158 1525.43 1042.64
159 1535.08 1049.24 17/7
160 1544.74 1055.84
161 1554.39 1062.44 27/11
162 1564.04 1069.04
163 1573.7 1075.63
164 1583.35 1082.23
165 1593.01 1088.83
166 1602.66 1095.43
167 1612.32 1102.03 33/13
168 1621.97 1108.63
169 1631.63 1115.23
170 1641.28 1121.83
171 1650.94 1128.43
172 1660.59 1135.03 47/18, 60/23
173 1670.24 1141.62
174 1679.9 1148.22
175 1689.55 1154.82 69/26
176 1699.21 1161.42
177 1708.86 1168.02 51/19
178 1718.52 1174.62 27/10
179 1728.17 1181.22 19/7
180 1737.83 1187.82 30/11
181 1747.48 1194.42
182 1757.14 1201.02
183 1766.79 1207.61
184 1776.45 1214.21
185 1786.1 1220.81
186 1795.75 1227.41
187 1805.41 1234.01
188 1815.06 1240.61
189 1824.72 1247.21 66/23
190 1834.37 1253.81
191 1844.03 1260.41 29/10
192 1853.68 1267.01
193 1863.34 1273.6
194 1872.99 1280.2
195 1882.65 1286.8
196 1892.3 1293.4
197 1901.96 1300 3/1

Harmonics

Approximation of harmonics in 197edt
Harmonic 2 3 4 5 6 7 8 9 10 11 12
Error Absolute (¢) -2.83 +0.00 +3.99 +3.86 -2.83 +0.63 +1.16 +0.00 +1.03 +0.16 +3.99
Relative (%) -29.3 +0.0 +41.4 +40.0 -29.3 +6.5 +12.1 +0.0 +10.7 +1.6 +41.4
Steps
(reduced)
124
(124)
197
(0)
249
(52)
289
(92)
321
(124)
349
(152)
373
(176)
394
(0)
413
(19)
430
(36)
446
(52)
Approximation of harmonics in 197edt
Harmonic 13 14 15 16 17 18 19 20 21 22 23
Error Absolute (¢) +0.59 -2.20 +3.86 -1.67 -0.42 -2.83 +0.11 -1.80 +0.63 -2.67 -2.39
Relative (%) +6.1 -22.8 +40.0 -17.3 -4.4 -29.3 +1.2 -18.6 +6.5 -27.7 -24.8
Steps
(reduced)
460
(66)
473
(79)
486
(92)
497
(103)
508
(114)
518
(124)
528
(134)
537
(143)
546
(152)
554
(160)
562
(168)
  This page is a stub. You can help the Xenharmonic Wiki by expanding it.