User:Inthar/Style guide

This page documents my xen math notation and its differences from conventional xen notation or conventional math notation.

Variables

  • Bolded variables denote interval sizes (especially letters of scale words) and elements of lattices. 0 is the unison.
    • 5L 2s
  • Sans serif function names are scale constructions, or more generally functions named more verbosely than is typical for conventional math notation.
    • [math]\displaystyle{ \mathsf{MOS}(5,2;6)(\mathbf{L}, \mathbf{s}) = \mathbf{LLLsLLs} }[/math]
    • Blackdye is [math]\displaystyle{ \mathsf{Flought}(\mathrm{Pyth}[5]; 10/9) }[/math]

Discrete sets

  • For [math]\displaystyle{ k \in \mathbb{R} }[/math] and [math]\displaystyle{ n\in \mathbb{Z}_{\gt 0}, }[/math] [math]\displaystyle{ [n]_k }[/math] denotes [math]\displaystyle{ \{k, k+1, ..., k+n-1\}. }[/math] I may also use [math]\displaystyle{ [i:j] }[/math] for [math]\displaystyle{ [j-i]_i. }[/math] For n = 0, [0]k is the empty set.

Words

  • Zero-indexing is used for indices.
  • A (linear) word is a function [math]\displaystyle{ w : [n]_0 \to \mathcal{A} }[/math] where [math]\displaystyle{ \mathcal{A} }[/math] is a set of letters and [math]\displaystyle{ n \in \mathbb{Z}_{\ge 0}. }[/math] n is called the length of w. The letter of w at index i is denoted w[i]. If 0 ≤ i < j ≤ |w| − 1, the slice notation w[i:j] denotes the (ji)-letter word w[i]w[i+1]...w[j−1].
  • A based circular word is a function [math]\displaystyle{ s: \mathbb{Z}/n \to \mathcal{A}, }[/math] where by abuse of notation, s[i] is used for s[i mod n]. The period of a based circular word s is the minimal [math]\displaystyle{ p, 1 \le p \le |s|, }[/math] such that for all i, [math]\displaystyle{ s[i+p]=s[i]. }[/math] If the period of s is equal to the length of s, then s is called primitive.
  • A (free) circular word is an equivalence class of based circular words equivalent under rotation, i.e. a set of the form [math]\displaystyle{ \{x\mapsto s[x], x\mapsto s[x+1], ..., x\mapsto s[x+|s|-1] \} }[/math] for s a based circular word. A based circular word may be called a mode of the corresponding free circular word or a rotation of the based circular word.
  • The length of a linear, based circular, or free circular word s is denoted |s| or len(s).
  • For circular words s, if i < j the slice notation s[i:j] denotes the (ji)-letter word s[i]s[i+1]...s[j−1], where all indices are taken mod |s|.
  • Shifts: If s is a circular or infinite word, then for [math]\displaystyle{ k \in \mathbb{Z}, \ \sigma^k(s) = (x \mapsto s[x+k]) }[/math] denotes s shifted to the left by k letters.
  • Substitution: If w is a linear or based circular word in X and possibly other letters, and u is a based circular word, then [math]\displaystyle{ \mathsf{subst}(w, \mathbf{X}, u) }[/math] denotes the word w but with the ith occurrence of X replaced with u[i] (for i ≥ 0).

Algebraic structures

  • [math]\displaystyle{ \mathrm{JI}\langle p_1, ..., p_r \rangle }[/math] is the p1.[...].pr subgroup, the subgroup of [math]\displaystyle{ (\mathbb{Q}_{\gt 0}, \cdot) }[/math] generated by rationals [math]\displaystyle{ p_1, ..., p_r. }[/math] For not-necessarily-JI generators, [math]\displaystyle{ \mathrm{M}\langle p_1, ..., p_r \rangle }[/math] is used.
  • If R is a commutative ring with 1, [math]\displaystyle{ R^r\langle a_1, ..., a_r\rangle }[/math] is the rank-r free R-module generated by basis elements [math]\displaystyle{ a_1, ..., a_r. }[/math] Ordered tuples in such modules are assumed to be in the given basis. Example: [math]\displaystyle{ \mathbf{m} + 3\mathbf{s} = (0,1,3) \in \mathbb{Z}^3\langle \mathbf{L}, \mathbf{m}, \mathbf{s}\rangle }[/math]

Miscellaneous

  • [math]\displaystyle{ \log }[/math] with no subscript is base e.
  • Temperament names are capitalized.