1700edo
![]() |
This page presents a novelty topic.
It may contain ideas which are less likely to find practical applications in music, or numbers or structures that are arbitrary or exceedingly small, large, or complex. Novelty topics are often developed by a single person or a small group. As such, this page may also contain idiosyncratic terms, notation, or conceptual frameworks. |
![]() |
This page is a stub. You can help the Xenharmonic Wiki by expanding it. |
← 1699edo | 1700edo | 1701edo → |
Theory
1700edo is consistent in the 5-odd-limit, although there is a large relative delta on the 3rd harmonic. From a regular temperament theory perspective, it's best usage is as a 2.9.11.21.23.31 subgroup tuning because all other harmonics up to 29th have more than 25% error. Nonetheless, it tunes the 323 & 2023 temperament leaves in the 17-limit on the patent val.
One step of 1700edo is the relative cent for 17edo. It has been named iota by Margo Schulter and George Secor.
Odd harmonics
Harmonic | 3 | 5 | 7 | 9 | 11 | 13 | 15 | 17 | 19 | 21 | 23 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | -0.308 | -0.196 | +0.351 | +0.090 | -0.024 | +0.178 | +0.202 | +0.221 | -0.337 | +0.043 | -0.039 |
Relative (%) | -43.6 | -27.8 | +49.7 | +12.7 | -3.4 | +25.2 | +28.6 | +31.3 | -47.7 | +6.0 | -5.5 | |
Steps (reduced) |
2694 (994) |
3947 (547) |
4773 (1373) |
5389 (289) |
5881 (781) |
6291 (1191) |
6642 (1542) |
6949 (149) |
7221 (421) |
7467 (667) |
7690 (890) |
Regular temperament properties
Rank-2 temperaments
Periods
per 8ve |
Generator
(Reduced) |
Cents
(Reduced) |
Associated
Ratio |
Temperament |
---|---|---|---|---|
17 | 121\1700 (21\1700) |
85.412 (14.824) |
1024/975 (8192/8125) |
Leaves |