55edo
IMPORTED REVISION FROM WIKISPACES
This is an imported revision from Wikispaces. The revision metadata is included below for reference:
- This revision was by author xenwolf and made on 2011-03-18 03:55:07 UTC.
- The original revision id was 211672942.
- The revision comment was:
The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.
Original Wikitext content:
=<span style="color: #008023; font-size: 103%;">55 tone equal temperament</span>= //55edo// divides the octave into 55 parts of 21.818 cents. It can be used for a meantone tuning, and is close to 1/6 comma [[meantone]] (and is almost exactly 10/57 comma meantone.) [[http://en.wikipedia.org/wiki/Georg_Philipp_Telemann|Telemann]] suggested it as a theoretical basis for analyzing the intervals of meantone, in which he was followed by [[http://en.wikipedia.org/wiki/Leopold_Mozart|Leopold]] and [[http://en.wikipedia.org/wiki/Wolfgang_Amadeus_Mozart|Wolfgang Mozart]]. It can also be used for [[Meantone family|mohajira and liese]] temperaments. 5-limit commas: 81/80, <31 1 -14| 7-limit commas: 81/80, 686/675, 6144/6125 11-limit commas: 81/80, 121/120, 176/175, 686/675 ==Intervals== || Degrees of 55-EDO || Cents value || || 0 || 0 || || 1 || 21,818 || || 2 || 43,636 || || 3 || 65,455 || || 4 || 87,273 || || 5 || 109,091 || || 6 || 130,909 || || 7 || 152,727 || || 8 || 174,545 || || 9 || 196,364 || || 10 || 218,182 || || 11 || 240 || || 12 || 261,818 || || 13 || 283,636 || || 14 || 305,455 || || 15 || 327,273 || || 16 || 349,091 || || 17 || 370,909 || || 18 || 392,727 || || 19 || 414,545 || || 20 || 436,364 || || 21 || 458,182 || || 22 || 480 || || 23 || 501,818 || || 24 || 523,636 || || 25 || 545,455 || || 26 || 567,273 || || 27 || 589,091 || || 28 || 610,909 || || 29 || 632,727 || || 30 || 654,545 || || 31 || 676,364 || || 32 || 698,182 || || 33 || 720 || || 34 || 741,818 || || 35 || 763,636 || || 36 || 785,455 || || 37 || 807,273 || || 38 || 829,091 || || 39 || 850,909 || || 40 || 872,727 || || 41 || 894,545 || || 42 || 916,364 || || 43 || 938,182 || || 44 || 960 || || 45 || 981,818 || || 46 || 1003,636 || || 47 || 1025,455 || || 48 || 1047,273 || || 49 || 1069,091 || || 50 || 1090,909 || || 51 || 1112,727 || || 52 || 1134,545 || || 53 || 1156,364 || || 54 || 1178,182 ||
Original HTML content:
<html><head><title>55edo</title></head><body><!-- ws:start:WikiTextHeadingRule:0:<h1> --><h1 id="toc0"><a name="x55 tone equal temperament"></a><!-- ws:end:WikiTextHeadingRule:0 --><span style="color: #008023; font-size: 103%;">55 tone equal temperament</span></h1> <em>55edo</em> divides the octave into 55 parts of 21.818 cents. It can be used for a meantone tuning, and is close to 1/6 comma <a class="wiki_link" href="/meantone">meantone</a> (and is almost exactly 10/57 comma meantone.) <a class="wiki_link_ext" href="http://en.wikipedia.org/wiki/Georg_Philipp_Telemann" rel="nofollow">Telemann</a> suggested it as a theoretical basis for analyzing the intervals of meantone, in which he was followed by <a class="wiki_link_ext" href="http://en.wikipedia.org/wiki/Leopold_Mozart" rel="nofollow">Leopold</a> and <a class="wiki_link_ext" href="http://en.wikipedia.org/wiki/Wolfgang_Amadeus_Mozart" rel="nofollow">Wolfgang Mozart</a>. It can also be used for <a class="wiki_link" href="/Meantone%20family">mohajira and liese</a> temperaments.<br /> <br /> 5-limit commas: 81/80, <31 1 -14|<br /> <br /> 7-limit commas: 81/80, 686/675, 6144/6125<br /> <br /> 11-limit commas: 81/80, 121/120, 176/175, 686/675<br /> <br /> <!-- ws:start:WikiTextHeadingRule:2:<h2> --><h2 id="toc1"><a name="x55 tone equal temperament-Intervals"></a><!-- ws:end:WikiTextHeadingRule:2 -->Intervals</h2> <table class="wiki_table"> <tr> <td>Degrees of 55-EDO<br /> </td> <td>Cents value<br /> </td> </tr> <tr> <td>0<br /> </td> <td>0<br /> </td> </tr> <tr> <td>1<br /> </td> <td>21,818<br /> </td> </tr> <tr> <td>2<br /> </td> <td>43,636<br /> </td> </tr> <tr> <td>3<br /> </td> <td>65,455<br /> </td> </tr> <tr> <td>4<br /> </td> <td>87,273<br /> </td> </tr> <tr> <td>5<br /> </td> <td>109,091<br /> </td> </tr> <tr> <td>6<br /> </td> <td>130,909<br /> </td> </tr> <tr> <td>7<br /> </td> <td>152,727<br /> </td> </tr> <tr> <td>8<br /> </td> <td>174,545<br /> </td> </tr> <tr> <td>9<br /> </td> <td>196,364<br /> </td> </tr> <tr> <td>10<br /> </td> <td>218,182<br /> </td> </tr> <tr> <td>11<br /> </td> <td>240<br /> </td> </tr> <tr> <td>12<br /> </td> <td>261,818<br /> </td> </tr> <tr> <td>13<br /> </td> <td>283,636<br /> </td> </tr> <tr> <td>14<br /> </td> <td>305,455<br /> </td> </tr> <tr> <td>15<br /> </td> <td>327,273<br /> </td> </tr> <tr> <td>16<br /> </td> <td>349,091<br /> </td> </tr> <tr> <td>17<br /> </td> <td>370,909<br /> </td> </tr> <tr> <td>18<br /> </td> <td>392,727<br /> </td> </tr> <tr> <td>19<br /> </td> <td>414,545<br /> </td> </tr> <tr> <td>20<br /> </td> <td>436,364<br /> </td> </tr> <tr> <td>21<br /> </td> <td>458,182<br /> </td> </tr> <tr> <td>22<br /> </td> <td>480<br /> </td> </tr> <tr> <td>23<br /> </td> <td>501,818<br /> </td> </tr> <tr> <td>24<br /> </td> <td>523,636<br /> </td> </tr> <tr> <td>25<br /> </td> <td>545,455<br /> </td> </tr> <tr> <td>26<br /> </td> <td>567,273<br /> </td> </tr> <tr> <td>27<br /> </td> <td>589,091<br /> </td> </tr> <tr> <td>28<br /> </td> <td>610,909<br /> </td> </tr> <tr> <td>29<br /> </td> <td>632,727<br /> </td> </tr> <tr> <td>30<br /> </td> <td>654,545<br /> </td> </tr> <tr> <td>31<br /> </td> <td>676,364<br /> </td> </tr> <tr> <td>32<br /> </td> <td>698,182<br /> </td> </tr> <tr> <td>33<br /> </td> <td>720<br /> </td> </tr> <tr> <td>34<br /> </td> <td>741,818<br /> </td> </tr> <tr> <td>35<br /> </td> <td>763,636<br /> </td> </tr> <tr> <td>36<br /> </td> <td>785,455<br /> </td> </tr> <tr> <td>37<br /> </td> <td>807,273<br /> </td> </tr> <tr> <td>38<br /> </td> <td>829,091<br /> </td> </tr> <tr> <td>39<br /> </td> <td>850,909<br /> </td> </tr> <tr> <td>40<br /> </td> <td>872,727<br /> </td> </tr> <tr> <td>41<br /> </td> <td>894,545<br /> </td> </tr> <tr> <td>42<br /> </td> <td>916,364<br /> </td> </tr> <tr> <td>43<br /> </td> <td>938,182<br /> </td> </tr> <tr> <td>44<br /> </td> <td>960<br /> </td> </tr> <tr> <td>45<br /> </td> <td>981,818<br /> </td> </tr> <tr> <td>46<br /> </td> <td>1003,636<br /> </td> </tr> <tr> <td>47<br /> </td> <td>1025,455<br /> </td> </tr> <tr> <td>48<br /> </td> <td>1047,273<br /> </td> </tr> <tr> <td>49<br /> </td> <td>1069,091<br /> </td> </tr> <tr> <td>50<br /> </td> <td>1090,909<br /> </td> </tr> <tr> <td>51<br /> </td> <td>1112,727<br /> </td> </tr> <tr> <td>52<br /> </td> <td>1134,545<br /> </td> </tr> <tr> <td>53<br /> </td> <td>1156,364<br /> </td> </tr> <tr> <td>54<br /> </td> <td>1178,182<br /> </td> </tr> </table> </body></html>