35edo

Revision as of 08:39, 17 June 2012 by Wikispaces>phylingual (**Imported revision 345948592 - Original comment: **)

IMPORTED REVISION FROM WIKISPACES

This is an imported revision from Wikispaces. The revision metadata is included below for reference:

This revision was by author phylingual and made on 2012-06-17 08:39:14 UTC.
The original revision id was 345948592.
The revision comment was:

The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.

Original Wikitext content:

35-tET or 35-[[xenharmonic/edo|EDO]] refers to a tuning system which divides the octave into 35 steps of approximately [[xenharmonic/cent|34.29¢]] each.

As 35 is 5 times 7, 35edo allows for mixing the two smallest xenharmonic [[xenharmonic/macrotonal edos|macrotonal edos]]: [[xenharmonic/5edo|5edo]] and [[xenharmonic/7edo|7edo]]. A single degree of 35edo represents the difference between 7edo's narrow fifth of 685.71¢ and 5edo's wide fifth of 720¢. Because it includes 7edo, 35edo tunes the 29th harmonic with +1 cent of error. 35edo can also represent the 2.3.5.7.11.17 [[xenharmonic/Just intonation subgroups|subgroup]] and 2.9.5.7.11.17 subgroup, because of the accuracy of 9 and the flatness of all other subgroup generators (7/5 and 17/11 stand out, having less than 1 cent error). Therefore among whitewood tunings it is very versatile, you can switch between these different subgroups if you don't mind having to use two different 3/2s to reach the inconsistent 9 (a characteristic of whitewood tunings), and if you ignore [[xenharmonic/22edo|22edo]]'s more in-tune versions of 35edo MOS's and consistent representation of both subgroups. 35edo has the optimal patent val for [[xenharmonic/Greenwoodmic temperaments|greenwood]] and [[xenharmonic/Greenwoodmic temperaments#Secund|secund]] temperaments.

A good beginning for start to play 35-EDO is with the Sub-diatonic scale, that is a [[xenharmonic/MOS|MOS]] of 3L2s: 9 4 9 9 4.

=Intervals= 

(Bolded ratio indicates that the ratio is most accurately tuned by the given 35-edo interval.)
|| Degrees || Solfege || Cents value || Ratios in 2.5.7.11.17 subgroup || Ratios with flat 3 || Ratios with sharp 3 || Ratios with patent 9 ||
|| 0 || do || 0 || **1/1** || (see comma table) ||   ||   ||
|| 1 || du || 34.29 || **50/49**, **121/119**, 33/32 || **36/35** || 25/24 || **81/80** ||
|| 2 || di || 68.57 || 128/125 || **25/24** || 81/80 ||   ||
|| 3 || ra || 102.86 || **17/16** || **15/14** || **16/15** || **18/17** ||
|| 4 || ru || 137.14 ||   || **12/11**, 16/15 ||   ||   ||
|| 5 || ro || 171.43 || **11/10** ||   || 12/11 || **10/9** ||
|| 6 || re || 205.71 ||   ||   ||   || **9/8** ||
|| 7 || ri || 240 || **8/7** ||   || 7/6 ||   ||
|| 8 || ma || 274.29 || **20/17** || **7/6** ||   ||   ||
|| 9 || me || 308.57 ||   || **6/5** ||   ||   ||
|| 10 || mu || 342.86 || **17/14** ||   || 6/5 || **11/9** ||
|| 11 || mi || 377.14 || **5/4** ||   ||   ||   ||
|| 12 || mo || 411.43 || **14/11** ||   ||   ||   ||
|| 13 || fe || 445.71 || **22/17**, 32/25 ||   ||   || **9/7** ||
|| 14 || fo || 480 ||   ||   || 4/3 ||   ||
|| 15 || fa || 514.29 ||   || **4/3** ||   ||   ||
|| 16 || fu || 548.57 || **11/8** ||   ||   ||   ||
|| 17 || fi || 582.86 || **7/5** || **24/17** || 17/12 ||   ||
|| 18 || se || 617.14 || **10/7** || **17/12** || 24/17 ||   ||
|| 19 || su || 651.43 || **16/11** ||   ||   ||   ||
|| 20 || so || 685.71 ||   || **3/2** ||   ||   ||
|| 21 || sa || 720 ||   ||   || 3/2 ||   ||
|| 22 || si || 754.29 || **17/11**, 25/16 ||   ||   || **14/9** ||
|| 23 || lo || 788.57 || **11/7** ||   ||   ||   ||
|| 24 || le || 822.86 || **8/5** ||   ||   ||   ||
|| 25 || lu || 857.15 ||   ||   || 5/3 || **18/11** ||
|| 26 || la || 891.43 ||   || **5/3** ||   ||   ||
|| 27 || li || 925.71 || **17/10** || **12/7** ||   ||   ||
|| 28 || ta || 960 || **7/4** ||   ||   ||   ||
|| 29 || te || 994.29 ||   ||   ||   || **16/9** ||
|| 30 || to || 1028.57 || **20/11** ||   ||   || **9/5** ||
|| 31 || tu || 1062.86 ||   || **11/6**, 15/8 ||   ||   ||
|| 32 || ti || 1097.14 || **32/17** || **28/15** || **15/8** || **17/9** ||
|| 33 || de || 1131.43 ||   ||   ||   ||   ||
|| 34 || da || 1165.71 ||   ||   ||   ||   ||
=Rank two temperaments= 

||~ Periods
per octave ||~ Generator ||~ Temperaments with
flat 3/2 (patent val) ||~ <span style="display: block; text-align: center;">Temperaments with</span><span style="display: block; text-align: center;">sharp 3/2 (35b val)</span> ||
|| 1 || 1\35 ||   ||   ||
|| 1 || 2\35 ||   ||   ||
|| 1 || 3\35 ||   || [[Ripple]] ||
|| 1 || 4\35 || [[xenharmonic/Greenwoodmic temperaments#Secund|Secund]] ||   ||
|| 1 || 6\35 |||| Messed-up [[Chromatic pairs#Baldy|Baldy]] ||
|| 1 || 8\35 ||   || Messed-up [[Orwell]] ||
|| 1 || 9\35 || [[xenharmonic/Myna|Myna]] ||   ||
|| 1 || 11\35 || [[Magic family#Muggles|Muggles]] ||   ||
|| 1 || 12\35 ||   || [[Avicennmic temperaments#Roman|Roman]] ||
|| 1 || 13\35 |||| Inconsistent 2.9'/7.5/3 [[Sensi]] ||
|| 1 || 16\35 ||   ||   ||
|| 1 || 17\35 ||   ||   ||
|| 5 || 1\35 ||   || [[Blackwood]] (favoring 7/6) ||
|| 5 || 2\35 ||   || [[Blackwood]] (favoring 6/5 and 20/17) ||
|| 5 || 3\35 ||   || [[Blackwood]] (favoring 5/4 and 17/14) ||
|| 7 || 1\35 || [[xenharmonic/Apotome family|Whitewood]]/[[xenharmonic/Apotome family#Redwood|Redwood]] ||   ||
|| 7 || 2\35 || [[xenharmonic/Greenwoodmic temperaments#Greenwood|Greenwood]] ||   ||
=<span style="background-color: #ffffff;">Scales</span>= 
== == 
==<span style="background-color: #ffffff;">Commas</span>== 
35EDO tempers out the following commas. (Note: This assumes the val <35 55 81 98 121 130|.)
||~ **Comma** ||~ **Monzo** ||~ **Value (Cents)** ||~ **Name 1** ||~ **Name 2** ||~ **Name 3** ||
||= 2187/2048 || | -11 7 > ||> 113.69 ||= Apotome ||= Whitewood comma ||   ||
||= 6561/6250 || | -1 8 -5 > ||> 84.07 ||= Ripple comma ||=   ||   ||
||= 10077696/9765625 || | 9 9 -10 > ||> 54.46 ||= Mynic comma ||=   ||   ||
||= 3125/3072 || | -10 -1 5 > ||> 29.61 ||= Small diesis ||= Magic comma ||   ||
||= 405/392 || | -3 4 1 -2 > ||> 56.48 ||= Greenwoodma ||=   ||   ||
||= 16807/16384 || | -14 0 0 5 > ||> 44.13 ||=   ||=   ||   ||
||= 525/512 || | -9 1 2 1 > ||> 43.41 ||= Avicennma ||=   ||   ||
||= 126/125 || | 1 2 -3 1 > ||> 13.79 ||= Starling comma ||= Septimal semicomma ||   ||
||= 99/98 || | -1 2 0 -2 1 > ||> 17.58 ||= Mothwellsma ||=   ||   ||
||= 66/65 || | 1 1 -1 0 1 -1 > ||> 26.43 ||=   ||=   ||   ||
== == 

== == 

Original HTML content:

<html><head><title>35edo</title></head><body>35-tET or 35-<a class="wiki_link" href="http://xenharmonic.wikispaces.com/edo">EDO</a> refers to a tuning system which divides the octave into 35 steps of approximately <a class="wiki_link" href="http://xenharmonic.wikispaces.com/cent">34.29¢</a> each.<br />
<br />
As 35 is 5 times 7, 35edo allows for mixing the two smallest xenharmonic <a class="wiki_link" href="http://xenharmonic.wikispaces.com/macrotonal%20edos">macrotonal edos</a>: <a class="wiki_link" href="http://xenharmonic.wikispaces.com/5edo">5edo</a> and <a class="wiki_link" href="http://xenharmonic.wikispaces.com/7edo">7edo</a>. A single degree of 35edo represents the difference between 7edo's narrow fifth of 685.71¢ and 5edo's wide fifth of 720¢. Because it includes 7edo, 35edo tunes the 29th harmonic with +1 cent of error. 35edo can also represent the 2.3.5.7.11.17 <a class="wiki_link" href="http://xenharmonic.wikispaces.com/Just%20intonation%20subgroups">subgroup</a> and 2.9.5.7.11.17 subgroup, because of the accuracy of 9 and the flatness of all other subgroup generators (7/5 and 17/11 stand out, having less than 1 cent error). Therefore among whitewood tunings it is very versatile, you can switch between these different subgroups if you don't mind having to use two different 3/2s to reach the inconsistent 9 (a characteristic of whitewood tunings), and if you ignore <a class="wiki_link" href="http://xenharmonic.wikispaces.com/22edo">22edo</a>'s more in-tune versions of 35edo MOS's and consistent representation of both subgroups. 35edo has the optimal patent val for <a class="wiki_link" href="http://xenharmonic.wikispaces.com/Greenwoodmic%20temperaments">greenwood</a> and <a class="wiki_link" href="http://xenharmonic.wikispaces.com/Greenwoodmic%20temperaments#Secund">secund</a> temperaments.<br />
<br />
A good beginning for start to play 35-EDO is with the Sub-diatonic scale, that is a <a class="wiki_link" href="http://xenharmonic.wikispaces.com/MOS">MOS</a> of 3L2s: 9 4 9 9 4.<br />
<br />
<!-- ws:start:WikiTextHeadingRule:0:&lt;h1&gt; --><h1 id="toc0"><a name="Intervals"></a><!-- ws:end:WikiTextHeadingRule:0 -->Intervals</h1>
 <br />
(Bolded ratio indicates that the ratio is most accurately tuned by the given 35-edo interval.)<br />


<table class="wiki_table">
    <tr>
        <td>Degrees<br />
</td>
        <td>Solfege<br />
</td>
        <td>Cents value<br />
</td>
        <td>Ratios in 2.5.7.11.17 subgroup<br />
</td>
        <td>Ratios with flat 3<br />
</td>
        <td>Ratios with sharp 3<br />
</td>
        <td>Ratios with patent 9<br />
</td>
    </tr>
    <tr>
        <td>0<br />
</td>
        <td>do<br />
</td>
        <td>0<br />
</td>
        <td><strong>1/1</strong><br />
</td>
        <td>(see comma table)<br />
</td>
        <td><br />
</td>
        <td><br />
</td>
    </tr>
    <tr>
        <td>1<br />
</td>
        <td>du<br />
</td>
        <td>34.29<br />
</td>
        <td><strong>50/49</strong>, <strong>121/119</strong>, 33/32<br />
</td>
        <td><strong>36/35</strong><br />
</td>
        <td>25/24<br />
</td>
        <td><strong>81/80</strong><br />
</td>
    </tr>
    <tr>
        <td>2<br />
</td>
        <td>di<br />
</td>
        <td>68.57<br />
</td>
        <td>128/125<br />
</td>
        <td><strong>25/24</strong><br />
</td>
        <td>81/80<br />
</td>
        <td><br />
</td>
    </tr>
    <tr>
        <td>3<br />
</td>
        <td>ra<br />
</td>
        <td>102.86<br />
</td>
        <td><strong>17/16</strong><br />
</td>
        <td><strong>15/14</strong><br />
</td>
        <td><strong>16/15</strong><br />
</td>
        <td><strong>18/17</strong><br />
</td>
    </tr>
    <tr>
        <td>4<br />
</td>
        <td>ru<br />
</td>
        <td>137.14<br />
</td>
        <td><br />
</td>
        <td><strong>12/11</strong>, 16/15<br />
</td>
        <td><br />
</td>
        <td><br />
</td>
    </tr>
    <tr>
        <td>5<br />
</td>
        <td>ro<br />
</td>
        <td>171.43<br />
</td>
        <td><strong>11/10</strong><br />
</td>
        <td><br />
</td>
        <td>12/11<br />
</td>
        <td><strong>10/9</strong><br />
</td>
    </tr>
    <tr>
        <td>6<br />
</td>
        <td>re<br />
</td>
        <td>205.71<br />
</td>
        <td><br />
</td>
        <td><br />
</td>
        <td><br />
</td>
        <td><strong>9/8</strong><br />
</td>
    </tr>
    <tr>
        <td>7<br />
</td>
        <td>ri<br />
</td>
        <td>240<br />
</td>
        <td><strong>8/7</strong><br />
</td>
        <td><br />
</td>
        <td>7/6<br />
</td>
        <td><br />
</td>
    </tr>
    <tr>
        <td>8<br />
</td>
        <td>ma<br />
</td>
        <td>274.29<br />
</td>
        <td><strong>20/17</strong><br />
</td>
        <td><strong>7/6</strong><br />
</td>
        <td><br />
</td>
        <td><br />
</td>
    </tr>
    <tr>
        <td>9<br />
</td>
        <td>me<br />
</td>
        <td>308.57<br />
</td>
        <td><br />
</td>
        <td><strong>6/5</strong><br />
</td>
        <td><br />
</td>
        <td><br />
</td>
    </tr>
    <tr>
        <td>10<br />
</td>
        <td>mu<br />
</td>
        <td>342.86<br />
</td>
        <td><strong>17/14</strong><br />
</td>
        <td><br />
</td>
        <td>6/5<br />
</td>
        <td><strong>11/9</strong><br />
</td>
    </tr>
    <tr>
        <td>11<br />
</td>
        <td>mi<br />
</td>
        <td>377.14<br />
</td>
        <td><strong>5/4</strong><br />
</td>
        <td><br />
</td>
        <td><br />
</td>
        <td><br />
</td>
    </tr>
    <tr>
        <td>12<br />
</td>
        <td>mo<br />
</td>
        <td>411.43<br />
</td>
        <td><strong>14/11</strong><br />
</td>
        <td><br />
</td>
        <td><br />
</td>
        <td><br />
</td>
    </tr>
    <tr>
        <td>13<br />
</td>
        <td>fe<br />
</td>
        <td>445.71<br />
</td>
        <td><strong>22/17</strong>, 32/25<br />
</td>
        <td><br />
</td>
        <td><br />
</td>
        <td><strong>9/7</strong><br />
</td>
    </tr>
    <tr>
        <td>14<br />
</td>
        <td>fo<br />
</td>
        <td>480<br />
</td>
        <td><br />
</td>
        <td><br />
</td>
        <td>4/3<br />
</td>
        <td><br />
</td>
    </tr>
    <tr>
        <td>15<br />
</td>
        <td>fa<br />
</td>
        <td>514.29<br />
</td>
        <td><br />
</td>
        <td><strong>4/3</strong><br />
</td>
        <td><br />
</td>
        <td><br />
</td>
    </tr>
    <tr>
        <td>16<br />
</td>
        <td>fu<br />
</td>
        <td>548.57<br />
</td>
        <td><strong>11/8</strong><br />
</td>
        <td><br />
</td>
        <td><br />
</td>
        <td><br />
</td>
    </tr>
    <tr>
        <td>17<br />
</td>
        <td>fi<br />
</td>
        <td>582.86<br />
</td>
        <td><strong>7/5</strong><br />
</td>
        <td><strong>24/17</strong><br />
</td>
        <td>17/12<br />
</td>
        <td><br />
</td>
    </tr>
    <tr>
        <td>18<br />
</td>
        <td>se<br />
</td>
        <td>617.14<br />
</td>
        <td><strong>10/7</strong><br />
</td>
        <td><strong>17/12</strong><br />
</td>
        <td>24/17<br />
</td>
        <td><br />
</td>
    </tr>
    <tr>
        <td>19<br />
</td>
        <td>su<br />
</td>
        <td>651.43<br />
</td>
        <td><strong>16/11</strong><br />
</td>
        <td><br />
</td>
        <td><br />
</td>
        <td><br />
</td>
    </tr>
    <tr>
        <td>20<br />
</td>
        <td>so<br />
</td>
        <td>685.71<br />
</td>
        <td><br />
</td>
        <td><strong>3/2</strong><br />
</td>
        <td><br />
</td>
        <td><br />
</td>
    </tr>
    <tr>
        <td>21<br />
</td>
        <td>sa<br />
</td>
        <td>720<br />
</td>
        <td><br />
</td>
        <td><br />
</td>
        <td>3/2<br />
</td>
        <td><br />
</td>
    </tr>
    <tr>
        <td>22<br />
</td>
        <td>si<br />
</td>
        <td>754.29<br />
</td>
        <td><strong>17/11</strong>, 25/16<br />
</td>
        <td><br />
</td>
        <td><br />
</td>
        <td><strong>14/9</strong><br />
</td>
    </tr>
    <tr>
        <td>23<br />
</td>
        <td>lo<br />
</td>
        <td>788.57<br />
</td>
        <td><strong>11/7</strong><br />
</td>
        <td><br />
</td>
        <td><br />
</td>
        <td><br />
</td>
    </tr>
    <tr>
        <td>24<br />
</td>
        <td>le<br />
</td>
        <td>822.86<br />
</td>
        <td><strong>8/5</strong><br />
</td>
        <td><br />
</td>
        <td><br />
</td>
        <td><br />
</td>
    </tr>
    <tr>
        <td>25<br />
</td>
        <td>lu<br />
</td>
        <td>857.15<br />
</td>
        <td><br />
</td>
        <td><br />
</td>
        <td>5/3<br />
</td>
        <td><strong>18/11</strong><br />
</td>
    </tr>
    <tr>
        <td>26<br />
</td>
        <td>la<br />
</td>
        <td>891.43<br />
</td>
        <td><br />
</td>
        <td><strong>5/3</strong><br />
</td>
        <td><br />
</td>
        <td><br />
</td>
    </tr>
    <tr>
        <td>27<br />
</td>
        <td>li<br />
</td>
        <td>925.71<br />
</td>
        <td><strong>17/10</strong><br />
</td>
        <td><strong>12/7</strong><br />
</td>
        <td><br />
</td>
        <td><br />
</td>
    </tr>
    <tr>
        <td>28<br />
</td>
        <td>ta<br />
</td>
        <td>960<br />
</td>
        <td><strong>7/4</strong><br />
</td>
        <td><br />
</td>
        <td><br />
</td>
        <td><br />
</td>
    </tr>
    <tr>
        <td>29<br />
</td>
        <td>te<br />
</td>
        <td>994.29<br />
</td>
        <td><br />
</td>
        <td><br />
</td>
        <td><br />
</td>
        <td><strong>16/9</strong><br />
</td>
    </tr>
    <tr>
        <td>30<br />
</td>
        <td>to<br />
</td>
        <td>1028.57<br />
</td>
        <td><strong>20/11</strong><br />
</td>
        <td><br />
</td>
        <td><br />
</td>
        <td><strong>9/5</strong><br />
</td>
    </tr>
    <tr>
        <td>31<br />
</td>
        <td>tu<br />
</td>
        <td>1062.86<br />
</td>
        <td><br />
</td>
        <td><strong>11/6</strong>, 15/8<br />
</td>
        <td><br />
</td>
        <td><br />
</td>
    </tr>
    <tr>
        <td>32<br />
</td>
        <td>ti<br />
</td>
        <td>1097.14<br />
</td>
        <td><strong>32/17</strong><br />
</td>
        <td><strong>28/15</strong><br />
</td>
        <td><strong>15/8</strong><br />
</td>
        <td><strong>17/9</strong><br />
</td>
    </tr>
    <tr>
        <td>33<br />
</td>
        <td>de<br />
</td>
        <td>1131.43<br />
</td>
        <td><br />
</td>
        <td><br />
</td>
        <td><br />
</td>
        <td><br />
</td>
    </tr>
    <tr>
        <td>34<br />
</td>
        <td>da<br />
</td>
        <td>1165.71<br />
</td>
        <td><br />
</td>
        <td><br />
</td>
        <td><br />
</td>
        <td><br />
</td>
    </tr>
</table>

<!-- ws:start:WikiTextHeadingRule:2:&lt;h1&gt; --><h1 id="toc1"><a name="Rank two temperaments"></a><!-- ws:end:WikiTextHeadingRule:2 -->Rank two temperaments</h1>
 <br />


<table class="wiki_table">
    <tr>
        <th>Periods<br />
per octave<br />
</th>
        <th>Generator<br />
</th>
        <th>Temperaments with<br />
flat 3/2 (patent val)<br />
</th>
        <th><span style="display: block; text-align: center;">Temperaments with</span><span style="display: block; text-align: center;">sharp 3/2 (35b val)</span><br />
</th>
    </tr>
    <tr>
        <td>1<br />
</td>
        <td>1\35<br />
</td>
        <td><br />
</td>
        <td><br />
</td>
    </tr>
    <tr>
        <td>1<br />
</td>
        <td>2\35<br />
</td>
        <td><br />
</td>
        <td><br />
</td>
    </tr>
    <tr>
        <td>1<br />
</td>
        <td>3\35<br />
</td>
        <td><br />
</td>
        <td><a class="wiki_link" href="/Ripple">Ripple</a><br />
</td>
    </tr>
    <tr>
        <td>1<br />
</td>
        <td>4\35<br />
</td>
        <td><a class="wiki_link" href="http://xenharmonic.wikispaces.com/Greenwoodmic%20temperaments#Secund">Secund</a><br />
</td>
        <td><br />
</td>
    </tr>
    <tr>
        <td>1<br />
</td>
        <td>6\35<br />
</td>
        <td colspan="2">Messed-up <a class="wiki_link" href="/Chromatic%20pairs#Baldy">Baldy</a><br />
</td>
    </tr>
    <tr>
        <td>1<br />
</td>
        <td>8\35<br />
</td>
        <td><br />
</td>
        <td>Messed-up <a class="wiki_link" href="/Orwell">Orwell</a><br />
</td>
    </tr>
    <tr>
        <td>1<br />
</td>
        <td>9\35<br />
</td>
        <td><a class="wiki_link" href="http://xenharmonic.wikispaces.com/Myna">Myna</a><br />
</td>
        <td><br />
</td>
    </tr>
    <tr>
        <td>1<br />
</td>
        <td>11\35<br />
</td>
        <td><a class="wiki_link" href="/Magic%20family#Muggles">Muggles</a><br />
</td>
        <td><br />
</td>
    </tr>
    <tr>
        <td>1<br />
</td>
        <td>12\35<br />
</td>
        <td><br />
</td>
        <td><a class="wiki_link" href="/Avicennmic%20temperaments#Roman">Roman</a><br />
</td>
    </tr>
    <tr>
        <td>1<br />
</td>
        <td>13\35<br />
</td>
        <td colspan="2">Inconsistent 2.9'/7.5/3 <a class="wiki_link" href="/Sensi">Sensi</a><br />
</td>
    </tr>
    <tr>
        <td>1<br />
</td>
        <td>16\35<br />
</td>
        <td><br />
</td>
        <td><br />
</td>
    </tr>
    <tr>
        <td>1<br />
</td>
        <td>17\35<br />
</td>
        <td><br />
</td>
        <td><br />
</td>
    </tr>
    <tr>
        <td>5<br />
</td>
        <td>1\35<br />
</td>
        <td><br />
</td>
        <td><a class="wiki_link" href="/Blackwood">Blackwood</a> (favoring 7/6)<br />
</td>
    </tr>
    <tr>
        <td>5<br />
</td>
        <td>2\35<br />
</td>
        <td><br />
</td>
        <td><a class="wiki_link" href="/Blackwood">Blackwood</a> (favoring 6/5 and 20/17)<br />
</td>
    </tr>
    <tr>
        <td>5<br />
</td>
        <td>3\35<br />
</td>
        <td><br />
</td>
        <td><a class="wiki_link" href="/Blackwood">Blackwood</a> (favoring 5/4 and 17/14)<br />
</td>
    </tr>
    <tr>
        <td>7<br />
</td>
        <td>1\35<br />
</td>
        <td><a class="wiki_link" href="http://xenharmonic.wikispaces.com/Apotome%20family">Whitewood</a>/<a class="wiki_link" href="http://xenharmonic.wikispaces.com/Apotome%20family#Redwood">Redwood</a><br />
</td>
        <td><br />
</td>
    </tr>
    <tr>
        <td>7<br />
</td>
        <td>2\35<br />
</td>
        <td><a class="wiki_link" href="http://xenharmonic.wikispaces.com/Greenwoodmic%20temperaments#Greenwood">Greenwood</a><br />
</td>
        <td><br />
</td>
    </tr>
</table>

<!-- ws:start:WikiTextHeadingRule:4:&lt;h1&gt; --><h1 id="toc2"><a name="Scales"></a><!-- ws:end:WikiTextHeadingRule:4 --><span style="background-color: #ffffff;">Scales</span></h1>
 <!-- ws:start:WikiTextHeadingRule:6:&lt;h2&gt; --><h2 id="toc3"><!-- ws:end:WikiTextHeadingRule:6 --> </h2>
 <!-- ws:start:WikiTextHeadingRule:8:&lt;h2&gt; --><h2 id="toc4"><a name="Scales-Commas"></a><!-- ws:end:WikiTextHeadingRule:8 --><span style="background-color: #ffffff;">Commas</span></h2>
 35EDO tempers out the following commas. (Note: This assumes the val &lt;35 55 81 98 121 130|.)<br />


<table class="wiki_table">
    <tr>
        <th><strong>Comma</strong><br />
</th>
        <th><strong>Monzo</strong><br />
</th>
        <th><strong>Value (Cents)</strong><br />
</th>
        <th><strong>Name 1</strong><br />
</th>
        <th><strong>Name 2</strong><br />
</th>
        <th><strong>Name 3</strong><br />
</th>
    </tr>
    <tr>
        <td style="text-align: center;">2187/2048<br />
</td>
        <td>| -11 7 &gt;<br />
</td>
        <td style="text-align: right;">113.69<br />
</td>
        <td style="text-align: center;">Apotome<br />
</td>
        <td style="text-align: center;">Whitewood comma<br />
</td>
        <td><br />
</td>
    </tr>
    <tr>
        <td style="text-align: center;">6561/6250<br />
</td>
        <td>| -1 8 -5 &gt;<br />
</td>
        <td style="text-align: right;">84.07<br />
</td>
        <td style="text-align: center;">Ripple comma<br />
</td>
        <td style="text-align: center;"><br />
</td>
        <td><br />
</td>
    </tr>
    <tr>
        <td style="text-align: center;">10077696/9765625<br />
</td>
        <td>| 9 9 -10 &gt;<br />
</td>
        <td style="text-align: right;">54.46<br />
</td>
        <td style="text-align: center;">Mynic comma<br />
</td>
        <td style="text-align: center;"><br />
</td>
        <td><br />
</td>
    </tr>
    <tr>
        <td style="text-align: center;">3125/3072<br />
</td>
        <td>| -10 -1 5 &gt;<br />
</td>
        <td style="text-align: right;">29.61<br />
</td>
        <td style="text-align: center;">Small diesis<br />
</td>
        <td style="text-align: center;">Magic comma<br />
</td>
        <td><br />
</td>
    </tr>
    <tr>
        <td style="text-align: center;">405/392<br />
</td>
        <td>| -3 4 1 -2 &gt;<br />
</td>
        <td style="text-align: right;">56.48<br />
</td>
        <td style="text-align: center;">Greenwoodma<br />
</td>
        <td style="text-align: center;"><br />
</td>
        <td><br />
</td>
    </tr>
    <tr>
        <td style="text-align: center;">16807/16384<br />
</td>
        <td>| -14 0 0 5 &gt;<br />
</td>
        <td style="text-align: right;">44.13<br />
</td>
        <td style="text-align: center;"><br />
</td>
        <td style="text-align: center;"><br />
</td>
        <td><br />
</td>
    </tr>
    <tr>
        <td style="text-align: center;">525/512<br />
</td>
        <td>| -9 1 2 1 &gt;<br />
</td>
        <td style="text-align: right;">43.41<br />
</td>
        <td style="text-align: center;">Avicennma<br />
</td>
        <td style="text-align: center;"><br />
</td>
        <td><br />
</td>
    </tr>
    <tr>
        <td style="text-align: center;">126/125<br />
</td>
        <td>| 1 2 -3 1 &gt;<br />
</td>
        <td style="text-align: right;">13.79<br />
</td>
        <td style="text-align: center;">Starling comma<br />
</td>
        <td style="text-align: center;">Septimal semicomma<br />
</td>
        <td><br />
</td>
    </tr>
    <tr>
        <td style="text-align: center;">99/98<br />
</td>
        <td>| -1 2 0 -2 1 &gt;<br />
</td>
        <td style="text-align: right;">17.58<br />
</td>
        <td style="text-align: center;">Mothwellsma<br />
</td>
        <td style="text-align: center;"><br />
</td>
        <td><br />
</td>
    </tr>
    <tr>
        <td style="text-align: center;">66/65<br />
</td>
        <td>| 1 1 -1 0 1 -1 &gt;<br />
</td>
        <td style="text-align: right;">26.43<br />
</td>
        <td style="text-align: center;"><br />
</td>
        <td style="text-align: center;"><br />
</td>
        <td><br />
</td>
    </tr>
</table>

<!-- ws:start:WikiTextHeadingRule:10:&lt;h2&gt; --><h2 id="toc5"><!-- ws:end:WikiTextHeadingRule:10 --> </h2>
 <br />
<!-- ws:start:WikiTextHeadingRule:12:&lt;h2&gt; --><h2 id="toc6"><!-- ws:end:WikiTextHeadingRule:12 --> </h2>
</body></html>