This is a sandbox page for me (Ganaram) to test out a few things before deploying things. (Expect some mess.)

Mos intervals

The intervals of SCALESIG are named after the number of steps subtended and, apart from the unison (0-step) and octave (STEPCOUNT-step), appear in two varieties or sizes each. Interval varieties are named major and minor, or augmented, perfect, and diminished for the generators of SCALESIG.

Intervals of 5L 3s
Intervals Steps
subtended
Range in cents
Generic Specific Abbrev.
0-oneirostep Perfect 0-oneirostep P0oneis 0 0.0 ¢
1-oneirostep Minor 1-oneirostep m1oneis s 0.0 ¢ to 150.0 ¢
Major 1-oneirostep M1oneis L 150.0 ¢ to 240.0 ¢
2-oneirostep Minor 2-oneirostep m2oneis L + s 240.0 ¢ to 300.0 ¢
Major 2-oneirostep M2oneis 2L 300.0 ¢ to 480.0 ¢
3-oneirostep Diminished 3-oneirostep d3oneis L + 2s 240.0 ¢ to 450.0 ¢
Perfect 3-oneirostep P3oneis 2L + s 450.0 ¢ to 480.0 ¢
4-oneirostep Minor 4-oneirostep m4oneis 2L + 2s 480.0 ¢ to 600.0 ¢
Major 4-oneirostep M4oneis 3L + s 600.0 ¢ to 720.0 ¢
5-oneirostep Perfect 5-oneirostep P5oneis 3L + 2s 720.0 ¢ to 750.0 ¢
Augmented 5-oneirostep A5oneis 4L + s 750.0 ¢ to 960.0 ¢
6-oneirostep Minor 6-oneirostep m6oneis 3L + 3s 720.0 ¢ to 900.0 ¢
Major 6-oneirostep M6oneis 4L + 2s 900.0 ¢ to 960.0 ¢
7-oneirostep Minor 7-oneirostep m7oneis 4L + 3s 960.0 ¢ to 1050.0 ¢
Major 7-oneirostep M7oneis 5L + 2s 1050.0 ¢ to 1200.0 ¢
8-oneirostep Perfect 8-oneirostep P8oneis 5L + 3s 1200.0 ¢

Mos genchain

Generator chain of 10L 5s
Bright gens Scale degree Abbrev. Scale degree Abbrev. Scale degree Abbrev. Scale degree Abbrev. Scale degree Abbrev.
4 Augmented 1-mosdegree A1md Augmented 4-mosdegree A4md Augmented 7-mosdegree A7md Augmented 10-mosdegree A10md Augmented 13-mosdegree A13md
3 Augmented 0-mosdegree A0md Augmented 3-mosdegree A3md Augmented 6-mosdegree A6md Augmented 9-mosdegree A9md Augmented 12-mosdegree A12md
2 Augmented 2-mosdegree A2md Augmented 5-mosdegree A5md Augmented 8-mosdegree A8md Augmented 11-mosdegree A11md Augmented 14-mosdegree A14md
1 Perfect 1-mosdegree P1md Perfect 4-mosdegree P4md Perfect 7-mosdegree P7md Perfect 10-mosdegree P10md Perfect 13-mosdegree P13md
0 Perfect 0-mosdegree
Perfect 3-mosdegree
P0md
P3md
Perfect 3-mosdegree
Perfect 6-mosdegree
P3md
P6md
Perfect 6-mosdegree
Perfect 9-mosdegree
P6md
P9md
Perfect 9-mosdegree
Perfect 12-mosdegree
P9md
P12md
Perfect 12-mosdegree
Perfect 15-mosdegree
P12md
P15md
−1 Perfect 2-mosdegree P2md Perfect 5-mosdegree P5md Perfect 8-mosdegree P8md Perfect 11-mosdegree P11md Perfect 14-mosdegree P14md
−2 Diminished 1-mosdegree d1md Diminished 4-mosdegree d4md Diminished 7-mosdegree d7md Diminished 10-mosdegree d10md Diminished 13-mosdegree d13md
−3 Diminished 3-mosdegree d3md Diminished 6-mosdegree d6md Diminished 9-mosdegree d9md Diminished 12-mosdegree d12md Diminished 15-mosdegree d15md
−4 Diminished 2-mosdegree d2md Diminished 5-mosdegree d5md Diminished 8-mosdegree d8md Diminished 11-mosdegree d11md Diminished 14-mosdegree d14md
Generator chain of 2L 5s
Bright gens Scale degree Abbrev.
8 Augmented 3-peldegree A3peld
7 Augmented 0-peldegree A0peld
6 Augmented 4-peldegree A4peld
5 Major 1-peldegree M1peld
4 Major 5-peldegree M5peld
3 Major 2-peldegree M2peld
2 Major 6-peldegree M6peld
1 Perfect 3-peldegree P3peld
0 Perfect 0-peldegree
Perfect 7-peldegree
P0peld
P7peld
−1 Perfect 4-peldegree P4peld
−2 Minor 1-peldegree m1peld
−3 Minor 5-peldegree m5peld
−4 Minor 2-peldegree m2peld
−5 Minor 6-peldegree m6peld
−6 Diminished 3-peldegree d3peld
−7 Diminished 7-peldegree d7peld
−8 Diminished 4-peldegree d4peld
Generator chain of 5L 2s
Bright gens Scale degree Abbrev.
11 Augmented 2-diadegree A2diad
10 Augmented 5-diadegree A5diad
9 Augmented 1-diadegree A1diad
8 Augmented 4-diadegree A4diad
7 Augmented 0-diadegree A0diad
6 Augmented 3-diadegree A3diad
5 Major 6-diadegree M6diad
4 Major 2-diadegree M2diad
3 Major 5-diadegree M5diad
2 Major 1-diadegree M1diad
1 Perfect 4-diadegree P4diad
0 Perfect 0-diadegree
Perfect 7-diadegree
P0diad
P7diad
−1 Perfect 3-diadegree P3diad
−2 Minor 6-diadegree m6diad
−3 Minor 2-diadegree m2diad
−4 Minor 5-diadegree m5diad
−5 Minor 1-diadegree m1diad
−6 Diminished 4-diadegree d4diad
−7 Diminished 7-diadegree d7diad
−8 Diminished 3-diadegree d3diad
−9 Diminished 6-diadegree d6diad
−10 Diminished 2-diadegree d2diad
−11 Diminished 5-diadegree d5diad

5L 2s modes and modmos modes

Scale degrees of the modes of 5L 2s
UDP Cyclic
order
Step
pattern
Scale degree (diadegree)
0 1 2 3 4 5 6 7
6|0 1 LLLsLLs Perf. Maj. Maj. Aug. Perf. Maj. Maj. Perf.
5|1 5 LLsLLLs Perf. Maj. Maj. Perf. Perf. Maj. Maj. Perf.
4|2 2 LLsLLsL Perf. Maj. Maj. Perf. Perf. Maj. Min. Perf.
3|3 6 LsLLLsL Perf. Maj. Min. Perf. Perf. Maj. Min. Perf.
2|4 3 LsLLsLL Perf. Maj. Min. Perf. Perf. Min. Min. Perf.
1|5 7 sLLLsLL Perf. Min. Min. Perf. Perf. Min. Min. Perf.
0|6 4 sLLsLLL Perf. Min. Min. Perf. Dim. Min. Min. Perf.
Scale degrees of the modes of 5L 2s (LsLLsAs)
UDP and
alterations
Cyclic
order
Step
pattern
Scale degree (diadegree)
0 1 2 3 4 5 6 7
2|4 M6md 1 LsLLsAs Perf. Maj. Min. Perf. Perf. Min. Maj. Perf.
0|6 M5md 2 sLLsAsL Perf. Min. Min. Perf. Dim. Maj. Min. Perf.
5|1 A4md 3 LLsAsLs Perf. Maj. Maj. Perf. Aug. Maj. Maj. Perf.
3|3 A3md 4 LsAsLsL Perf. Maj. Min. Aug. Perf. Maj. Min. Perf.
1|5 M2md 5 sAsLsLL Perf. Min. Maj. Perf. Perf. Min. Min. Perf.
6|0 A1md 6 AsLsLLs Perf. Aug. Maj. Aug. Perf. Maj. Maj. Perf.
0|6 d3md d6md 7 sLsLLsA Perf. Min. Min. Dim. Dim. Min. Dim. Perf.
Scale degrees of the modes of 5L 2s (LsLLLLs)
UDP and
alterations
Cyclic
order
Step
pattern
Scale degree (diadegree)
0 1 2 3 4 5 6 7
5|1 m2md
3|3 M6md
1 LsLLLLs Perf. Maj. Min. Perf. Perf. Maj. Maj. Perf.
3|3 m1md
1|5 M5md
2 sLLLLsL Perf. Min. Min. Perf. Perf. Maj. Min. Perf.
6|0 A4md 3 LLLLsLs Perf. Maj. Maj. Aug. Aug. Maj. Maj. Perf.
6|0 m6md
4|2 A3md
4 LLLsLsL Perf. Maj. Maj. Aug. Perf. Maj. Min. Perf.
4|2 m5md
2|4 M2md
5 LLsLsLL Perf. Maj. Maj. Perf. Perf. Min. Min. Perf.
2|4 d4md
0|6 M1md
6 LsLsLLL Perf. Maj. Min. Perf. Dim. Min. Min. Perf.
0|6 d3md 7 sLsLLLL Perf. Min. Min. Dim. Dim. Min. Min. Perf.
Scale degrees of the modes of 5L 2s (LLsLsAs)
UDP and
alterations
Cyclic
order
Step
pattern
Scale degree (diadegree)
0 1 2 3 4 5 6 7
5|1 m5md 1 LLsLsAs Perf. Maj. Maj. Perf. Perf. Min. Maj. Perf.
3|3 d4md 2 LsLsAsL Perf. Maj. Min. Perf. Dim. Maj. Min. Perf.
1|5 d3md 3 sLsAsLL Perf. Min. Min. Dim. Perf. Min. Min. Perf.
6|0 m2md 4 LsAsLLs Perf. Maj. Min. Aug. Perf. Maj. Maj. Perf.
4|2 m1md 5 sAsLLsL Perf. Min. Maj. Perf. Perf. Maj. Min. Perf.
6|0 A1md A4md 6 AsLLsLs Perf. Aug. Maj. Aug. Aug. Maj. Maj. Perf.
0|6 d6md 7 sLLsLsA Perf. Min. Min. Perf. Dim. Min. Dim. Perf.
Scale degrees of the modes of 5L 2s (AAdAdAd)
UDP and
alterations
Cyclic
order
Step
pattern
Scale degree (diadegree)
0 1 2 3 4 5 6 7
6|0 A1md AA2md AA4md A6md 1 AAdAdAd Perf. Aug. 2× Aug. Aug. 2× Aug. Maj. Aug. Perf.
6|0 A1md m2md d4md d6md
0|6 A1md A3md M5md d6md
2 AdAdAdA Perf. Aug. Min. Aug. Dim. Maj. Dim. Perf.
0|6 d1md dd3md dd5md d6md 3 dAdAdAA Perf. Dim. Min. 2× Dim. Dim. 2× Dim. Dim. Perf.
6|0 A1md m2md d4md A6md
0|6 A1md A3md M5md A6md
4 AdAdAAd Perf. Aug. Min. Aug. Dim. Maj. Aug. Perf.
3|3 d1md dd3md d4md d6md
0|6 d1md dd3md M5md d6md
5 dAdAAdA Perf. Dim. Min. 2× Dim. Dim. Maj. Dim. Perf.
6|0 A1md m2md AA4md A6md
3|3 A1md A3md AA4md A6md
6 AdAAdAd Perf. Aug. Min. Aug. 2× Aug. Maj. Aug. Perf.
6|0 d1md m2md d4md d6md
0|6 d1md A3md M5md d6md
7 dAAdAdA Perf. Dim. Min. Aug. Dim. Maj. Dim. Perf.
Scale degrees of the modes of 5L 2s (LLLLLLd)
UDP and
alterations
Cyclic
order
Step
pattern
Scale degree (diadegree)
0 1 2 3 4 5 6 7
6|0 A4md A5md A6md 1 LLLLLLd Perf. Maj. Maj. Aug. Aug. Aug. Aug. Perf.
6|0 A4md A5md m6md
4|2 A3md A4md A5md
2 LLLLLdL Perf. Maj. Maj. Aug. Aug. Aug. Min. Perf.
6|0 A4md m5md m6md
2|4 M2md A3md A4md
3 LLLLdLL Perf. Maj. Maj. Aug. Aug. Min. Min. Perf.
6|0 d4md m5md m6md
0|6 M1md M2md A3md
4 LLLdLLL Perf. Maj. Maj. Aug. Dim. Min. Min. Perf.
4|2 d3md d4md m5md
0|6 M1md M2md d3md
5 LLdLLLL Perf. Maj. Maj. Dim. Dim. Min. Min. Perf.
2|4 d2md d3md d4md
0|6 M1md d2md d3md
6 LdLLLLL Perf. Maj. Dim. Dim. Dim. Min. Min. Perf.
0|6 d1md d2md d3md 7 dLLLLLL Perf. Dim. Dim. Dim. Dim. Min. Min. Perf.
Scale degrees of the modes of 5L 2s (LALdLAd)
UDP and
alterations
Cyclic
order
Step
pattern
Scale degree (diadegree)
0 1 2 3 4 5 6 7
6|0 A2md AA3md A6md
3|3 A2md AA3md A6md
1 LALdLAd Perf. Maj. Aug. 2× Aug. Perf. Maj. Aug. Perf.
4|2 A1md A2md A5md
1|5 A1md A2md A5md
2 ALdLAdL Perf. Aug. Aug. Perf. Perf. Aug. Min. Perf.
6|0 d2md d3md d5md d6md
2|4 d2md d3md d5md d6md
3 LdLAdLA Perf. Maj. Dim. Dim. Perf. Dim. Dim. Perf.
4|2 d1md d2md dd4md d5md
0|6 d1md d2md dd4md d5md
4 dLAdLAL Perf. Dim. Dim. Perf. 2× Dim. Dim. Min. Perf.
5|1 A2md A5md A6md
2|4 A2md A5md A6md
5 LAdLALd Perf. Maj. Aug. Perf. Perf. Aug. Aug. Perf.
3|3 A1md A4md A5md
0|6 A1md A4md A5md
6 AdLALdL Perf. Aug. Min. Perf. Aug. Aug. Min. Perf.
5|1 d1md d2md d5md d6md
1|5 d1md d2md d5md d6md
7 dLALdLA Perf. Dim. Dim. Perf. Perf. Dim. Dim. Perf.

4L 4s modes and modmos modes

Scale degrees of the modes of 4L 4s
UDP Cyclic
order
Step
pattern
Scale degree (tetrawddegree)
0 1 2 3 4 5 6 7 8
4|0(4) 1 LsLsLsLs Perf. Maj. Perf. Maj. Perf. Maj. Perf. Maj. Perf.
0|4(4) 2 sLsLsLsL Perf. Min. Perf. Min. Perf. Min. Perf. Min. Perf.
Scale degrees of the modes of 4L 4s (LLssLLss)
UDP and
alterations
Cyclic
order
Step
pattern
Scale degree (tetrawddegree)
0 1 2 3 4 5 6 7 8
4|0(4) A2md A6md 1 LLssLLss Perf. Maj. Aug. Maj. Perf. Maj. Aug. Maj. Perf.
4|0(4) m3md m7md
0|4(4) M1md M5md
2 LssLLssL Perf. Maj. Perf. Min. Perf. Maj. Perf. Min. Perf.
0|4(4) d2md d6md 3 ssLLssLL Perf. Min. Dim. Min. Perf. Min. Dim. Min. Perf.
4|0(4) m1md m5md
0|4(4) M3md M7md
4 sLLssLLs Perf. Min. Perf. Maj. Perf. Min. Perf. Maj. Perf.
Scale degrees of the modes of 4L 4s (LLssLsLs)
UDP and
alterations
Cyclic
order
Step
pattern
Scale degree (tetrawddegree)
0 1 2 3 4 5 6 7 8
4|0(4) A2md 1 LLssLsLs Perf. Maj. Aug. Maj. Perf. Maj. Perf. Maj. Perf.
0|4(4) M1md 2 LssLsLsL Perf. Maj. Perf. Min. Perf. Min. Perf. Min. Perf.
0|4(4) d2md d4md d6md 3 ssLsLsLL Perf. Min. Dim. Min. Dim. Min. Dim. Min. Perf.
0|4(4) M7md 4 sLsLsLLs Perf. Min. Perf. Min. Perf. Min. Perf. Maj. Perf.
4|0(4) A6md 5 LsLsLLss Perf. Maj. Perf. Maj. Perf. Maj. Aug. Maj. Perf.
0|4(4) M5md 6 sLsLLssL Perf. Min. Perf. Min. Perf. Maj. Perf. Min. Perf.
4|0(4) A4md 7 LsLLssLs Perf. Maj. Perf. Maj. Aug. Maj. Perf. Maj. Perf.
0|4(4) M3md 8 sLLssLsL Perf. Min. Perf. Maj. Perf. Min. Perf. Min. Perf.

Sandbox for proposed templates

Cent ruler

50
50
50
50
50
50
50
50
50
50
50
50
50
50
50
50
50
50
50
50
50
50
50
50


L
L
L
s
L
L
s

MOS characteristics

NOTE: not suitable for displaying intervals or scale degrees. Repurpose for other content.

Scale degrees of the modes of 5L 2s
UDP Cyclic
order
Step
pattern
Scale degree (diadegree)
0 1 2 3 4 5 6 7
6|0 1 LLLsLLs Perf. Maj. Maj. Aug. Perf. Maj. Maj. Perf.
5|1 5 LLsLLLs Perf. Maj. Maj. Perf. Perf. Maj. Maj. Perf.
4|2 2 LLsLLsL Perf. Maj. Maj. Perf. Perf. Maj. Min. Perf.
3|3 6 LsLLLsL Perf. Maj. Min. Perf. Perf. Maj. Min. Perf.
2|4 3 LsLLsLL Perf. Maj. Min. Perf. Perf. Min. Min. Perf.
1|5 7 sLLLsLL Perf. Min. Min. Perf. Perf. Min. Min. Perf.
0|6 4 sLLsLLL Perf. Min. Min. Perf. Dim. Min. Min. Perf.
Intervals of 5L 2s
Intervals Steps
subtended
Range in cents
Generic Specific Abbrev.
0-diastep Perfect 0-diastep P0dias 0 0.0 ¢
1-diastep Minor 1-diastep m1dias s 0.0 ¢ to 171.4 ¢
Major 1-diastep M1dias L 171.4 ¢ to 240.0 ¢
2-diastep Minor 2-diastep m2dias L + s 240.0 ¢ to 342.9 ¢
Major 2-diastep M2dias 2L 342.9 ¢ to 480.0 ¢
3-diastep Perfect 3-diastep P3dias 2L + s 480.0 ¢ to 514.3 ¢
Augmented 3-diastep A3dias 3L 514.3 ¢ to 720.0 ¢
4-diastep Diminished 4-diastep d4dias 2L + 2s 480.0 ¢ to 685.7 ¢
Perfect 4-diastep P4dias 3L + s 685.7 ¢ to 720.0 ¢
5-diastep Minor 5-diastep m5dias 3L + 2s 720.0 ¢ to 857.1 ¢
Major 5-diastep M5dias 4L + s 857.1 ¢ to 960.0 ¢
6-diastep Minor 6-diastep m6dias 4L + 2s 960.0 ¢ to 1028.6 ¢
Major 6-diastep M6dias 5L + s 1028.6 ¢ to 1200.0 ¢
7-diastep Perfect 7-diastep P7dias 5L + 2s 1200.0 ¢
Tamnams suggests the name NAME for this scale, which comes from ORIGIN. Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua.
4
5
6
7
8
9

MOS intervals (using large/small instead of MmAPd)

Intervals of 5L 2s
Interval Size(s) Steps Range in cents Abbrev.
0-diastep (root) Perfect 0-diastep 0 0.0¢ P0ms
1-diastep Small 1-diastep s 0.0¢ to 171.4¢ s1ms
Large 1-diastep L 171.4¢ to 240.0¢ L1ms
2-diastep Small 2-diastep L + s 240.0¢ to 342.9¢ s2ms
Large 2-diastep 2L 342.9¢ to 480.0¢ L2ms
3-diastep Small 3-diastep 2L + s 480.0¢ to 514.3¢ s3ms
Large 3-diastep 3L 514.3¢ to 720.0¢ L3ms
4-diastep Small 4-diastep 2L + 2s 480.0¢ to 685.7¢ s4ms
Large 4-diastep 3L + s 685.7¢ to 720.0¢ L4ms
5-diastep Small 5-diastep 3L + 2s 720.0¢ to 857.1¢ s5ms
Large 5-diastep 4L + s 857.1¢ to 960.0¢ L5ms
6-diastep Small 6-diastep 4L + 2s 960.0¢ to 1028.6¢ s6ms
Large 6-diastep 5L + s 1028.6¢ to 1200.0¢ L6ms
7-diastep (octave) Perfect 7-diastep 5L + 2s 1200.0¢ P7ms

MOS mode degrees (using large/small instead of MmAPd)

Scale degree qualities of 5L 2s modes
Mode names Ordering Step pattern Scale degree
Default Names Bri. Rot. 0 1 2 3 4 5 6 7
5L 2s 6|0 Lydian 1 1 LLLsLLs Perf. Lg. Lg. Lg. Lg. Lg. Lg. Perf.
5L 2s 5|1 Ionian (major) 2 5 LLsLLLs Perf. Lg. Lg. Sm. Lg. Lg. Lg. Perf.
5L 2s 4|2 Mixolydian 3 2 LLsLLsL Perf. Lg. Lg. Sm. Lg. Lg. Sm. Perf.
5L 2s 3|3 Dorian 4 6 LsLLLsL Perf. Lg. Sm. Sm. Lg. Lg. Sm. Perf.
5L 2s 2|4 Aeolian (minor) 5 3 LsLLsLL Perf. Lg. Sm. Sm. Lg. Sm. Sm. Perf.
5L 2s 1|5 Phrygian 6 7 sLLLsLL Perf. Sm. Sm. Sm. Lg. Sm. Sm. Perf.
5L 2s 0|6 Locrian 7 4 sLLsLLL Perf. Sm. Sm. Sm. Sm. Sm. Sm. Perf.

KB vis

Type Visualization Individual steps Notes
Start Large step Small step End
Small vis
┌╥╥╥┬╥╥┬┐
│║║║│║║││
│││││││││
└┴┴┴┴┴┴┴┘
┌
│
│
└
╥
║
│
┴
┬
│
│
┴
┐
│
│
┘
Not enough room for note names.
Large vis
┌──┬─┬─┬─┬─┬─┬──┬──┬─┬─┬─┬──┬───┐
│░░│▒│░│▒│░│▒│░░│░░│▒│░│▒│░░│░░░│
│░░│▒│░│▒│░│▒│░░│░░│▒│░│▒│░░│░░░│
│░░└┬┘░└┬┘░└┬┘░░│░░└┬┘░└┬┘░░│░░░│
│░░░│░░░│░░░│░░░│░░░│░░░│░░░│░░░│
│░█░│░░░│░░░│░░░│░░░│░░░│░░░│░█░│
└───┴───┴───┴───┴───┴───┴───┴───┘
┌──
│  
│  
│  
│  
│ X
└──
┬─┬─
│ │ 
│ │ 
└┬┘ 
 │  
 │ X
─┴──
─┬──
 │ 
 │ 
 │ 
 │  
 │ X
─┴──
─┐
 │
 │
 │
 │
 │
─┘
Black squares indicate notes one equave apart.

Contains shading characters, meant for spacing.

Type Visualization Individual steps Notes
Start Size 1 Size 2 Size 3 Size 4 Size 5 End
Multisize vis (large)
┌────┬───┬──┬───┬──┬─┬─┬────┬────┬─┬─┬──┬─┬─┬────┬──────┐
│░░░░│▒▒▒│░░│▒▒▒│░░│▒│▒│░░░░│░░░░│▒│▒│░░│▒│▒│░░░░│░░░░░░│
│░░░░│▒▒▒│░░│▒▒▒│░░│▒│▒│░░░░│░░░░│▒│▒│░░│▒│▒│░░░░│░░░░░░│
│░░░░│▒▒▒│░░│▒▒▒│░░│▒│▒│░░░░│░░░░│▒│▒│░░├─┼─┤░░░░│░░░░░░│
│░░░░│▒▒▒│░░│▒▒▒│░░│▒│▒│░░░░│░░░░│▒│▒│░░│▒│▒│░░░░│░░░░░░│
│░░░░│▒▒▒│░░├───┤░░├─┴─┤░░░░│░░░░├─┼─┤░░│▒│▒│░░░░│░░░░░░│
│░░░░│▒▒▒│░░│▒▒▒│░░│▒▒▒│░░░░│░░░░│▒│▒│░░├─┴─┤░░░░│░░░░░░│
│░░░░│▒▒▒│░░│▒▒▒│░░│▒▒▒│░░░░│░░░░│▒│▒│░░│▒▒▒│░░░░│░░░░░░│
│░░░░└─┬─┘░░└─┬─┘░░└─┬─┘░░░░│░░░░└─┼─┘░░└─┬─┘░░░░│░░░░░░│
│░░░░░░│░░░░░░│░░░░░░│░░░░░░│░░░░░░│░░░░░░│░░░░░░│░░░░░░│
│░░░░░░│░░░░░░│░░░░░░│░░░░░░│░░░░░░│░░░░░░│░░░░░░│░░░░░░│
│░░░░░░│░░░░░░│░░░░░░│░░░░░░│░░░░░░│░░░░░░│░░░░░░│░░░░░░│
│░░░░░░│░░░░░░│░░░░░░│░░░░░░│░░░░░░│░░░░░░│░░░░░░│░░░░░░│
└──────┴──────┴──────┴──────┴──────┴──────┴──────┴──────┘
┌────
│░░░░
│░░░░
│░░░░
│░░░░
│░░░░
│░░░░
│░░░░
│░░░░
│░░░░
│░░░░
│░░░░
│░░░░
│░░░░
└────

────┬──
░░░░│░░
░░░░│░░
░░░░│░░
░░░░│░░
░░░░│░░
░░░░│░░
░░░░│░░
░░░░│░░
░░░░│░░
░░░░│░░
░░░░│░░
░░░░│░░
░░░░│░░
────┴──

┬───┬──
│▓▓▓│░░
│▓▓▓│░░
│▓▓▓│░░
│▓▓▓│░░
│▓▓▓│░░
│▓▓▓│░░
│▓▓▓│░░
│▓▓▓│░░
└─┬─┘░░
░░│░░░░
░░│░░░░
░░│░░░░
░░│░░░░
──┴────

┬───┬──
│▓▓▓│░░
│▓▓▓│░░
│▓▓▓│░░
│▓▓▓│░░
├───┤░░
│▓▓▓│░░
│▓▓▓│░░
│▓▓▓│░░
└─┬─┘░░
░░│░░░░
░░│░░░░
░░│░░░░
░░│░░░░
──┴────

┬─┬─┬──
│▓│▓│░░
│▓│▓│░░
│▓│▓│░░
│▓│▓│░░
├─┴─┤░░
│▓▓▓│░░
│▓▓▓│░░
│▓▓▓│░░
└─┬─┘░░
░░│░░░░
░░│░░░░
░░│░░░░
░░│░░░░
──┴────

┬─┬─┬──
│▓│▓│░░
│▓│▓│░░
│▓│▓│░░
│▓│▓│░░
├─┼─┤░░
│▓│▓│░░
│▓│▓│░░
│▓│▓│░░
└─┼─┘░░
░░│░░░░
░░│░░░░
░░│░░░░
░░│░░░░
──┴────

──┐
░░│
░░│
░░│
░░│
░░│
░░│
░░│
░░│
░░│
░░│
░░│
░░│
░░│
──┘

X's are placeholders for note names.

Naturals only, as there is not enough room for accidentals.

May not display correctly on some devices.

Testing with unintrusive filler characters

TAMNAMS use

This article assumes TAMNAMS conventions for naming scale degrees, intervals, and step ratios.

Names for the scale degrees of xL ys, the position of the scales tones, are called mosdegrees, or prefixdegrees. Its intervals, the pitch difference between any two tones, are based on the number of large and small steps between them and are called mossteps, or prefixsteps. Both mosdegrees and mossteps use 0-indexed numbering, as opposed to using 1-indexed ordinals, such as mos-1st instead of 0-mosstep. The use of 1-indexed ordinal names is discouraged for nondiatonic MOS scales.

JI ratio intro

For general ratios: m/n, also called interval-name, is a p-limit just intonation ratio of exactly/about r¢.

For harmonics: m/1, also called interval-name, is a just intonation ration that represents the mth harmonic of exactly/about r¢.

MOS step sizes

3L 4s step sizes
Interval Basic 3L 4s

(10edo, L:s = 2:1)

Hard 3L 4s

(13edo, L:s = 3:1)

Soft 3L 4s

(17edo, L:s = 3:2)

Approx. JI ratios
Steps Cents Steps Cents Steps Cents
Large step 2 240¢ 3 276.9¢ 3 211.8¢ Hide column if no ratios given
Small step 1 120¢ 1 92.3¢ 2 141.2¢
Bright generator 3 360¢ 4 369.2¢ 5 355.6¢

Notes:

  • Allow option to show the bright generator, dark generator, or no generator.
  • JI ratios column only shows if there are any ratios to show

Mos ancestors and descendants

2nd ancestor 1st ancestor Mos 1st descendants 2nd descendants
uL vs zL ws xL ys xL (x+y)s xL (2x+y)s
(2x+y)L xs
(x+y)L xs (2x+y)L (x+y)s
(x+y)L (2x+y)s

Navbox MOS

Encoding scheme for module:mos

Mossteps as a vector of L's and s's

For an arbitrary step sequence consisting of L's and s's, the sum of the quantities of L's and s's denotes what mosstep it is. EG, "LLLsL" is a 5-mosstep since it has 5 L's and s's total. This can be expressed as a vector denoting how many L's and s's there are. EG, "LLLsL" becomes { 4, 1 }, denoting 4 large steps and 1 small step.

Alterations by adding a chroma always adds one L and subtracts one s (or subtracts one L and adds one s, if lowering by a chroma), so the sum of L's and s's, even if one of the quantities is negative, will always denote what k-mosstep that interval is. EG, raising "LLLsL" by a chroma produces the vector { 5, 0 }, and raising it by another chroma produces the vector { 6, -1 }.

Through this, the "original size" of the interval can always be deduced.

EG, the vector { 6, -2 } is given, assuming a mos of 5L 2s. Adding 6 and -2 shows that the interval is a 4-mosstep. Taking the brightest mode of 5L 2s (LLLsLLs) and truncating it to the first 4 steps (LLLs), the corresponding vector is { 3, 1 }. This is the vector to compare to. Subtracting the given vector from the comparison vector ( as { 6-3, -2-1 }) produces the vector { 3, -3 }, meaning that { 6, -2 } is the large 4-mosstep raised by 3 chromas. (A shortcut can be employed by simply subtracting only the L-values.) The decoding scheme below shows how the "large 4-mosstep plus 3 chromas" can be decoded into more familiar terms. In this example, since the large 4-mosstep is the perfect bright generator, adding 3 chromas makes it triply augmented.

Encoding scheme
Value Encoded Decoded
Intervals with 2 sizes Intervals with 1 size Nonperfectable intervals Bright gen Dark gen Period intervals
2 Large plus 2 chromas Perfect plus 2 chromas 2× Augmented 2× Augmented 3× Augmented 2× Augmented
1 Large plus 1 chroma Perfect plus 1 chroma Augmented Augmented 2× Augmented Augmented
0 Large Perfect Major Perfect Augmented Perfect
-1 Small Perfect minus 1 chroma Minor Diminished Perfect Diminished
-2 Small minus 1 chroma Perfect minus 2 chromas Diminished 2× Diminished Diminished 2× Diminished
-3 Small minus 2 chromas Perfect minus 3 chromas 2× Diminished 3× Diminished 2× Diminished 3× Diminished

Rationale:

  • Vectors of L's and s's can always be translated back to the original k-mosstep, no matter how many chromas were added. The "unmodified" vector (the large k-mosstep, or perfect k-mosstep for period intervals) can be compared with the mosstep vector to produce the number of chromas.
    • Alterations by entire large steps or small steps is considered interval arithmetic.
  • Easy to translate values to number of chromas for mos notation. Best done with notation assigned to the brightest mode, but can be adapted for arbitrary notations by adjusting the approprite chroma offsets.

Examples of encodings for 5L 2s

Interval encodings for 5L 2s
Interval in mossteps Encoding Decoding Standard notation in the key of F
Mossteps Chroma
0 0 0 Perfect 0-diastep F
s 1 -1 Minor 1-diastep Gb
L 1 0 Major 1-diastep G
L + s 2 -1 Minor 2-diastep Ab
2L 2 0 Major 2-diastep A
2L + s 3 -1 Perfect 3-diastep Bb
3L 3 0 Augmented 3-diastep B
2L + 2s 4 -1 Diminished 4-diastep Cb
3L + s 4 0 Perfect 4-diastep C
3L + 2s 5 -1 Minor 5-diastep Db
4L + s 5 0 Major 5-diastep D
4L + 2s 6 -1 Minor 6-diastep Eb
5L + s 6 0 Major 6-diastep E
5L + 2s 7 0 Perfect 7-diastep F
Mode names Ordering Step pattern Scale degree (encoded)
Default Names Bri. Rot. 0 1 2 3 4 5 6 7
5L 2s 6|0 Lydian 1 1 LLLsLLs 0 0 0 0 0 0 0 0
5L 2s 5|1 Ionian (major) 2 5 LLsLLLs 0 0 0 -1 0 0 0 0
5L 2s 4|2 Mixolydian 3 2 LLsLLsL 0 0 1 -1 0 0 -1 0
5L 2s 3|3 Dorian 4 6 LsLLLsL 0 0 -1 -1 0 0 -1 0
5L 2s 2|4 Aeolian (minor) 5 3 LsLLsLL 0 0 -1 -1 0 -1 -1 0
5L 2s 1|5 Phrygian 6 7 sLLLsLL 0 -1 -1 -1 0 -1 -1 0
5L 2s 0|6 Locrian 7 4 sLLsLLL 0 -1 -1 -1 -1 -1 -1 0