Prime factorization
|
53 (prime)
|
Step size
|
27.6768 ¢
|
Octave
|
43\53ed7/3 (1190.1 ¢)
|
Twelfth
|
69\53ed7/3 (1909.7 ¢)
|
Consistency limit
|
2
|
Distinct consistency limit
|
2
|
This edX is practically identical to an to an extended Pythagorean tuning distort¢ed to repeat at 7/3. It also makes the unit step fall .093 cent sharp of 14ed5/4.
Intervals
Degrees
|
Enneatonic
|
Pentadecatonic
|
Enneadecatonic
|
ed11\9~ed7/3
|
1
|
8x
|
Ex
|
W\\
|
Wb
|
Q#
|
27.673
|
27.6768
|
2
|
2b
|
Jb
|
Ab
|
Qp
|
Q#
|
Wb
|
55.3459
|
55.3536
|
3
|
9#
|
F#
|
W
|
83.0189
|
83.0304
|
4
|
3bb
|
Abb
|
Bbb
|
Ex
|
Ebb
|
W#
|
110.6918
|
110.7073
|
5
|
1#
|
G#
|
Wp
|
W#
|
Eb
|
138.3648
|
138.38405
|
6
|
8*/4bbb
|
E*
|
E\\
|
Eb
|
E
|
166.0377
|
166.0609
|
Bbbb
|
Cbbb
|
7
|
2
|
J
|
A
|
Wpp
|
Wx
|
E#/Rb
|
193.7107
|
193.7377
|
8
|
9x
|
Fx
|
E
|
R
|
221.38365
|
221.4145
|
9
|
3b
|
Ab
|
Bb
|
R\\
|
Rb
|
R#
|
249.0566
|
249.0913
|
10
|
1x
|
Gx
|
Ep
|
E#
|
Tb
|
276.7296
|
276.7681
|
11
|
4bb
|
Bbb
|
Cbb
|
R
|
T
|
304.4025
|
304.4449
|
12
|
2#
|
J#
|
A#
|
T\\
|
Tb
|
T#
|
332.0755
|
332.1217
|
13
|
9*/5bb
|
F*
|
Rp
|
R#
|
Yb
|
359.7484
|
359.7985
|
Cbb
|
Qbb
|
14
|
3
|
A
|
B
|
T
|
Y
|
387.4214
|
387.4753
|
15
|
1*/6bbb
|
G*
|
A\\
|
Ab
|
Y#
|
415.0943
|
415.1521
|
Qbbb
|
Dbbb
|
16
|
4b
|
Bb
|
Cb
|
Tp
|
T#
|
Ab
|
442.7673
|
442.82895
|
17
|
2x
|
Jx
|
Ax
|
A
|
U
|
470.44025
|
470.8058
|
18
|
5b
|
Cb
|
Qb
|
Sx
|
Sbb
|
U#
|
498.1132
|
498.1826
|
19
|
3#
|
A#
|
B#
|
Ap
|
A#
|
Ab
|
525.7862
|
525.8594
|
20
|
6bb
|
Qbb
|
Dbb
|
S\\
|
Sb
|
A
|
553.4591
|
553.5362
|
21
|
4
|
B
|
C
|
App
|
Ax
|
A#/Sb
|
581.1321
|
581.213
|
22
|
2*/7bbb
|
J*/Dbbb
|
A*/Sbb
|
S
|
608.805
|
608.889
|
23
|
5
|
C
|
Q
|
D\\
|
Db
|
S#
|
636.478
|
636.5666
|
24
|
3x
|
Ax
|
Bx
|
Sp
|
S#
|
Db
|
664.1509
|
664.2434
|
25
|
6b
|
Qb
|
Db
|
D
|
691.8239
|
691.9202
|
26
|
4#
|
B#
|
C#
|
F\\
|
Fb
|
D#
|
719.4969
|
719.59705
|
27
|
7bb
|
Dbb
|
Sbb
|
Dp
|
D#
|
Fb
|
747.1698
|
747.2739
|
28
|
5#
|
C#
|
Q#
|
F
|
774.8428
|
774.9507
|
29
|
3*/8bbb
|
A*
|
Bx
|
G\\
|
Gb
|
F#
|
802.6275
|
802.6275
|
Ebbb
|
30
|
6
|
Q
|
D
|
Fp
|
F#
|
Gb
|
830.1887
|
830.3043
|
31
|
4x
|
Bx
|
Cx
|
G
|
857.8616
|
857.9811
|
32
|
7b
|
Db
|
Sb
|
Zx
|
Zbb
|
G#
|
885.5346
|
885.6579
|
33
|
5x
|
Cx
|
Qx
|
Gp
|
G#
|
Hb
|
913.20755
|
913.3347
|
34
|
8bb
|
Ebb
|
Z\\
|
Zb
|
H
|
940.8805
|
941.0115
|
35
|
6#
|
Q#
|
D#
|
Gpp
|
Gx
|
H#
|
968.5535
|
968.6883
|
36
|
4*/9bbb
|
B*
|
C*
|
Z
|
Jb
|
996.2264
|
996.3651
|
Fbbb
|
37
|
7
|
D
|
S
|
X\\
|
Z#
|
J
|
1023.8994
|
1024.04195
|
38
|
5*/1bbb
|
C*
|
Q*
|
Zp
|
Xb
|
J#
|
1051.5723
|
1051.7188
|
Gbbb
|
39
|
8b
|
Eb
|
X
|
Zb
|
1079.2453
|
1079.3956
|
40
|
6x
|
Qx
|
Dx
|
C\\
|
X#
|
Z
|
1106.9182
|
1107.0724
|
41
|
9bb
|
Fbb
|
Xp
|
Cb
|
Z#/Xb
|
1134.5912
|
1134.7492
|
42
|
7#
|
D#
|
S#
|
C
|
X
|
1162.26415
|
1162.426
|
43
|
1bb
|
Gbb
|
V\\
|
C#
|
X#
|
1189.9371
|
1190.1028
|
44
|
8
|
E
|
Cp
|
Vb
|
Cb
|
1217.6101
|
1217.7796
|
45
|
6*/2bbb
|
Q*/Jbbb
|
D*/Abbb
|
V
|
C
|
1245.253
|
1245.4564
|
46
|
9b
|
Fb
|
Bx
|
Bbb
|
C#/Vb
|
1272.956
|
1273.1332
|
47
|
7x
|
Dx
|
Sx
|
Vp
|
V#
|
V
|
1300.6289
|
1300.81005
|
48
|
1b
|
Gb
|
B\\
|
Bb
|
V#
|
1328.3019
|
1328.4869
|
49
|
8#
|
E#
|
Vpp
|
Vx
|
Bb
|
1355.9748
|
1356.1164
|
50
|
2bb
|
Jbb
|
Abb
|
B
|
1383.6478
|
1383.8405
|
51
|
9
|
F
|
Q\\
|
Qb
|
B#
|
1411.3208
|
1411.5173
|
52
|
7*/3bbb
|
D*/Abbb
|
S*/Bbbb
|
Bp
|
B#
|
Qb
|
1438.9937
|
1439.1941
|
53
|
1
|
G
|
Q
|
1466.6
|
1466.8709
|