Module:ET
This module provides helper functions for equal-step tunings.
Functions
new
- Returns an array consisting of the components of an equal-step tuning.
parse
- Designed to convert strings in the format
[number of steps]ed[equave]
into an ET structure, and returns it via thenew
function. For example,ET.parse("12edo")
returns an array containing{12, 2, "edo"}
as_string
- Returns the string representation for an ET structure.
backslash_ratio
- Converts steps to a proper ratio as a floating-point number.
backslash_display
- Displays an ET structure in backslash form (
[steps]\[number of divisions]
).
cents
- Converts the interval an ET structure represents to cents.
hekts
- Converts the interval an ET structure represents to hekts (relative cent of 13edt).
approximate
- Returns the floor, round, or ceiling of a particular ratio.
tempers_out
- Determines if an ET tempers out a provided rational number.
is_highly_composite
- Determines if an ET is highly composite.
is_zeta
- Determines if an ET holds any zeta records.
why_zeta
- Describes what specific properties an ET has if it is a zeta record ET.
local rat = require('Module:Rational')
local seq = require('Module:Sequence')
local p = {}
local common_suffix = {
['3/2'] = 'f',
['2'] = 'o',
['2/1'] = 'o',
['3'] = 't',
['3/1'] = 't',
}
local common_ratio = {
['f'] = rat.new(3, 2),
['o'] = 2,
['t'] = 3
}
-- create a ET structure <size>ed<equave>
function p.new(size, equave, suffix)
size = size or 12
equave = equave or 2
if suffix == nil then
local equave_n, equave_m = rat.as_pair(equave)
local equave_ratio = rat.as_ratio(equave)
equave_ratio = equave_ratio:lower()
suffix = size .. 'ed'
if common_suffix[equave_ratio] then
suffix = suffix .. common_suffix[equave_ratio]
elseif equave_m == 1 then
suffix = suffix .. equave_n
else
suffix = suffix .. equave_ratio
end
end
return { size = size, equave = equave, suffix = suffix }
end
-- parse a ET structure
function p.parse(unparsed)
local size, suffix, equave = unparsed:match('^(%d+)([Ee][Dd](.+))$')
if equave == nil then
return nil
end
suffix = suffix:lower()
size = tonumber(size)
equave = common_ratio[equave] or rat.parse(equave)
if size == nil or equave == nil then
return nil
end
return p.new(size, equave, suffix)
end
-- construct a string representation for a ET structure
function p.as_string(et)
return et.size .. et.suffix
end
-- convert steps to a proper ratio (except that it is a float approximation)
function p.backslash_ratio(et, steps)
if et.size == 0 then
return 1
end
return rat.as_float(et.equave) ^ (steps / et.size)
end
-- convert steps to cents
function p.cents(et, steps)
if et.size == 0 then
return 0
end
steps = steps or 1
return 1200 * steps / et.size * math.log(rat.as_float(et.equave)) / math.log(2)
end
-- convert ratio to steps
-- ratio is a float!
-- towards is one of: -1 (floor), 0 (nearest), 1 (ceil)
function p.approximate(et, ratio, towards)
towards = towards or 0
if et.size == 0 then
return 0
end
local exact = math.log(ratio) / math.log(rat.as_float(et.equave)) * et.size
if towards < 0 then
return math.floor(exact)
elseif towards > 0 then
return math.ceil(exact)
else
return math.floor(exact + 0.5)
end
end
-- determine whether ET is highly composite
function p.is_highly_composite(et)
et.highly_composite = et.highly_composite or rat.is_highly_composite(et.size)
return et.highly_composite
end
-- determine whether ET's size could be within one of zeta function-related sequences
function p.is_zeta(et)
return seq.contains(seq.zeta_peak, et.size) ~= false
or seq.contains(seq.integral_zeta, et.size) ~= false
or seq.contains(seq.zeta_gap, et.size) ~= false
end
-- describe why
function p.why_zeta(et, debug_mode)
local zeta_peak = seq.contains(seq.zeta_peak, et.size)
local integral_zeta = seq.contains(seq.integral_zeta, et.size)
local zeta_gap = seq.contains(seq.zeta_gap, et.size)
local markers = {}
if zeta_peak then
table.insert(markers, '[[The Riemann zeta function and tuning#Peak EDOs|zeta peak]]')
elseif zeta_peak == nil then
table.insert(markers, '[[The Riemann zeta function and tuning#Peak EDOs|zeta peak?]]')
end
if integral_zeta then
table.insert(markers, '[[The Riemann zeta function and tuning#Integral of Zeta EDOs|integral of zeta]]')
elseif integral_zeta == nil then
table.insert(markers, '[[The Riemann zeta function and tuning#Integral of Zeta EDOs|integral of zeta?]]')
end
if zeta_gap then
table.insert(markers, '[[The Riemann zeta function and tuning#Zeta Gap EDOs|zeta gap]]')
elseif zeta_gap == nil then
table.insert(markers, '[[The Riemann zeta function and tuning#Zeta Gap EDOs|zeta gap?]]')
end
return table.concat(markers, ', ')
end
return p