local rat = require('Module:Rational')
local p = {}
-- compute all positive ratios n/m with n and m <= q modulo powers of equave
function p.limit_modulo_equave(q, equave)
equave = equave or 2
local ratios = {}
for n = 1, q, 2 do
for m = 1, q, 2 do
local a = rat.new(n, m)
a = rat.modulo_mul(a, equave)
local key = rat.as_ratio(a)
ratios[key] = a
end
end
return ratios
end
-- check additive consistency for a set of ratios (modulo powers of equave):
-- approx(a*b) = approx(a) + approx(b) forall a, b: a, b, ab in ratios
-- `distinct`: whether distinct ratios are required to be mapped to distinct approximations
function p.additively_consistent(equave, size, ratios, distinct)
distinct = distinct or false
local function approximate(a)
return math.floor(size * math.log(rat.as_float(a)) / math.log(rat.as_float(equave)) + 0.5)
end
if distinct then
local approx_set = {}
for a_key, a in pairs(ratios) do
local a_approx = approximate(a) % size
if approx_set[a_approx] then
return false
end
approx_set[a_approx] = true
end
end
local ratios_ordered = {}
for a_key, a in pairs(ratios) do
table.insert(ratios_ordered, a)
end
for i, a in ipairs(ratios_ordered) do
local a_approx = approximate(a)
for j, b in ipairs(ratios_ordered) do
if i <= j then
local b_approx = approximate(b)
local c = rat.mul(a, b)
local c_approx = approximate(c)
c = rat.modulo_mul(c, equave)
local c_key = rat.as_ratio(c)
if ratios[c_key] then
if c_approx ~= a_approx + b_approx then
return false
end
end
end
end
end
return true
end
-- find additive consistency limit
-- returns nil when at least `max_n`
-- `distinct`: whether distinct ratios are required to be mapped to distinct approximations
function p.consistency_limit(size, equave, distinct, max_n)
max_n = max_n or 1/0
equave = equave or 2
distinct = distinct or false
local n = 1
local last_n = 1
while true do
if rat.is_int(rat.div(n, equave)) then
n = n + 1
else
local ratios = p.limit_modulo_equave(n, equave)
local consistent = p.additively_consistent(equave, size, ratios, distinct)
if not consistent then
return last_n
end
last_n = n
n = n + 1
end
if n > max_n then
return nil
end
end
end
return p