101edo
IMPORTED REVISION FROM WIKISPACES
This is an imported revision from Wikispaces. The revision metadata is included below for reference:
- This revision was by author Osmiorisbendi and made on 2012-04-30 02:58:26 UTC.
- The original revision id was 327184110.
- The revision comment was:
The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.
Original Wikitext content:
**//101-EDO//** divides the [[octave]] into 101 equal parts of 11.881 [[cent]]s each. It can be used to tune the [[Schismatic family|grackle temperament]]. It is the 26th [[prime numbers|prime]] edo. [[5-limit]] commas: 32805/32768, <5 13 -11| [[7-limit]] commas: 126/125, 32805/32768, 2430/2401 ==__Some important MOS scales:__== **25 13 25 25 13:** //3L2s MOS// (Sub-Diatonic) **17 17 8 17 17 17 8:** //5L2s MOS// (Diatonic Pythagorean) **13 13 13 13 13 13 13 10:** //7L1s MOS// (Grumpy Octatonic) **13 13 13 5 13 13 13 13 5:** //7L2s MOS// (Hornbostel 1/13-tone [13;5 superdiatonic relation]) **10 10 7 10 10 10 7 10 10 10 7:** //8L3s MOS// (Improper Sensi-11) **7 7 7 8 7 7 7 7 8 7 7 7 7 8:** //3L11s MOS// (Anti-Ketradektriatoh form) =Links= [[http://tech.groups.yahoo.com/group/tuning-math/message/11157|The Ellis duodene in 101-equal]]
Original HTML content:
<html><head><title>101edo</title></head><body><strong><em>101-EDO</em></strong> divides the <a class="wiki_link" href="/octave">octave</a> into 101 equal parts of 11.881 <a class="wiki_link" href="/cent">cent</a>s each. It can be used to tune the <a class="wiki_link" href="/Schismatic%20family">grackle temperament</a>. It is the 26th <a class="wiki_link" href="/prime%20numbers">prime</a> edo.<br /> <br /> <a class="wiki_link" href="/5-limit">5-limit</a> commas: 32805/32768, <5 13 -11|<br /> <br /> <a class="wiki_link" href="/7-limit">7-limit</a> commas: 126/125, 32805/32768, 2430/2401<br /> <br /> <!-- ws:start:WikiTextHeadingRule:0:<h2> --><h2 id="toc0"><a name="x-Some important MOS scales:"></a><!-- ws:end:WikiTextHeadingRule:0 --><u>Some important MOS scales:</u></h2> <br /> <strong>25 13 25 25 13:</strong> <em>3L2s MOS</em> (Sub-Diatonic)<br /> <strong>17 17 8 17 17 17 8:</strong> <em>5L2s MOS</em> (Diatonic Pythagorean)<br /> <strong>13 13 13 13 13 13 13 10:</strong> <em>7L1s MOS</em> (Grumpy Octatonic)<br /> <strong>13 13 13 5 13 13 13 13 5:</strong> <em>7L2s MOS</em> (Hornbostel 1/13-tone [13;5 superdiatonic relation])<br /> <strong>10 10 7 10 10 10 7 10 10 10 7:</strong> <em>8L3s MOS</em> (Improper Sensi-11)<br /> <strong>7 7 7 8 7 7 7 7 8 7 7 7 7 8:</strong> <em>3L11s MOS</em> (Anti-Ketradektriatoh form)<br /> <br /> <!-- ws:start:WikiTextHeadingRule:2:<h1> --><h1 id="toc1"><a name="Links"></a><!-- ws:end:WikiTextHeadingRule:2 -->Links</h1> <a class="wiki_link_ext" href="http://tech.groups.yahoo.com/group/tuning-math/message/11157" rel="nofollow">The Ellis duodene in 101-equal</a></body></html>