These tables list interval classes under 3/2-equivalence ordered by complexity analogous to odd-limit.
The tables only list new entries. The limits contain all previous limits.
Note that every third table is empty similar to throdd-limit.
1-(3/2-odd)-limit
Representative |
Subunison |
Inbounds |
Above (or at) 3/2
|
1/1 |
2/3 |
1/1 |
3/2
|
2-(3/2-odd)-limit
Representative |
Subunison |
Inbounds |
Above 3/2
|
1/2 |
3/4 |
9/8 |
27/16
|
2/1 |
8/9 |
4/3 |
2/1
|
4-(3/2-odd)-limit
Representative |
Subunison |
Inbounds |
Above 3/2
|
1/4 |
27/32 |
81/64 |
243/128
|
4/1 |
8/3 |
4/1 |
6/1
|
5-(3/2-odd)-limit
Representative |
Subunison |
Inbounds |
Above 3/2
|
5/4 |
5/6 |
5/4 |
15/8
|
5/2 |
5/3 |
5/2 |
15/4
|
5/1 |
10/3 |
5/1 |
15/2
|
4/5 |
4/5 |
6/5 |
9/5
|
5/3 |
10/9 |
5/3 |
5/2
|
3/5 |
9/10 |
27/20 |
81/40
|
2/5 |
9/10 |
27/20 |
81/40
|
1/5 |
27/40 |
81/80 |
243/160
|
7-(3/2-odd)-limit
Representative |
Subunison |
Inbounds |
Above 3/2
|
7/4 |
7/6 |
7/4 |
21/8
|
7/2 |
7/3 |
7/2 |
21/4
|
5/7 |
5/7 |
15/14 |
45/28
|
7/1 |
14/3 |
7/1 |
21/2
|
3/7 |
27/28 |
81/56 |
243/112
|
7/6 |
7/9 |
7/6 |
7/4
|
1/7 |
81/112 |
243/224 |
729/448
|
6/7 |
6/7 |
9/7 |
27/14
|
7/5 |
14/15 |
7/5 |
21/10
|
4/7 |
6/7 |
9/7 |
27/14
|
2/7 |
27/28 |
81/56 |
243/112
|
7/3 |
14/9 |
7/3 |
7/2
|
8-(3/2-odd)-limit
Representative |
Subunison |
Inbounds |
Above 3/2
|
1/8 |
243/256 |
729/512 |
2187/1024
|
5/8 |
15/16 |
45/32 |
135/64
|
7/8 |
7/8 |
21/16 |
63/32
|
8/1 |
16/3 |
8/1 |
12/1
|
8/5 |
16/15 |
8/5 |
12/5
|
8/7 |
16/21 |
8/7 |
12/7
|
10-(3/2-odd)-limit
Representative |
Subunison |
Inbounds |
Above 3/2
|
7/10 |
7/10 |
21/20 |
63/40
|
10/1 |
20/3 |
10/1 |
15/1
|
1/10 |
243/320 |
729/640 |
2187/1280
|
10/7 |
20/21 |
10/7 |
15/7
|
11-(3/2-odd)-limit
Representative |
Subunison |
Inbounds |
Above 3/2
|
11/8 |
11/12 |
11/8 |
33/16
|
11/4 |
11/6 |
11/4 |
33/8
|
11/2 |
11/3 |
11/2 |
33/4
|
2/11 |
81/88 |
243/176 |
729/352
|
11/1 |
22/3 |
11/1 |
33/2
|
4/11 |
9/11 |
27/22 |
81/44
|
11/5 |
22/15 |
11/5 |
33/10
|
6/11 |
9/11 |
27/22 |
81/44
|
11/3 |
22/9 |
11/3 |
11/2
|
8/11 |
8/11 |
12/11 |
18/11
|
11/7 |
22/21 |
11/7 |
33/14
|
10/11 |
10/11 |
15/11 |
45/22
|
1/11 |
243/352 |
729/704 |
2187/1408
|
11/10 |
11/15 |
11/10 |
33/20
|
3/11 |
81/88 |
243/176 |
729/352
|
11/6 |
11/9 |
11/6 |
11/4
|
5/11 |
15/22 |
45/44 |
135/88
|
11/9 |
22/27 |
11/9 |
11/6
|
7/11 |
21/22 |
63/44 |
189/88
|
9/11 |
9/11 |
27/22 |
81/44
|
13-(3/2-odd)-limit
Representative |
Subunison |
Inbounds |
Above 3/2
|
13/8 |
13/12 |
13/8 |
39/16
|
13/4 |
13/6 |
13/4 |
39/8
|
13/2 |
13/3 |
13/2 |
39/4
|
1/13 |
729/832 |
2187/1664 |
6561/3328
|
13/11 |
26/33 |
13/11 |
39/22
|
13/1 |
26/3 |
13/1 |
39/2
|
2/13 |
81/104 |
243/208 |
729/416
|
13/7 |
26/21 |
13/7 |
39/14
|
3/13 |
81/104 |
243/208 |
729/416
|
4/13 |
9/13 |
27/26 |
81/52
|
13/6 |
13/9 |
13/6 |
13/4
|
5/13 |
45/52 |
135/104 |
405/208
|
6/13 |
9/13 |
27/26 |
81/52
|
7/13 |
21/26 |
63/52 |
189/104
|
13/9 |
26/27 |
13/9 |
13/6
|
8/13 |
12/13 |
18/13 |
27/13
|
13/5 |
26/15 |
13/5 |
39/10
|
13/12 |
13/18 |
13/12 |
13/8
|
13/3 |
26/9 |
13/3 |
13/2
|
9/13 |
9/13 |
27/26 |
81/52
|
10/13 |
10/13 |
15/13 |
45/26
|
13/10 |
13/15 |
13/10 |
39/20
|
11/13 |
11/13 |
33/26 |
99/52
|
12/13 |
12/13 |
18/13 |
27/13
|
14-(3/2-odd)-limit
Representative |
Subunison |
Inbounds |
Above 3/2
|
14/5 |
28/15 |
14/5 |
21/5
|
13/14 |
13/14 |
39/28 |
117/56
|
14/13 |
28/39 |
14/13 |
21/13
|
14/1 |
28/3 |
14/1 |
21/1
|
5/14 |
45/56 |
135/112 |
405/224
|
14/11 |
28/33 |
14/11 |
21/11
|
1/14 |
729/896 |
2187/1792 |
6561/3584
|
11/14 |
11/14 |
33/28 |
99/56
|
16-(3/2-odd)-limit
Representative |
Subunison |
Inbounds |
Above 3/2
|
1/16 |
729/1024 |
2187/2048 |
6561/4096
|
5/16 |
45/64 |
135/128 |
405/256
|
13/16 |
13/16 |
39/32 |
117/64
|
7/16 |
63/64 |
189/128 |
567/256
|
11/16 |
11/16 |
33/32 |
99/64
|
16/1 |
32/3 |
16/1 |
24/1
|
16/13 |
32/39 |
16/13 |
24/13
|
16/5 |
32/15 |
16/5 |
24/5
|
16/7 |
32/21 |
16/7 |
24/7
|
16/11 |
32/33 |
16/11 |
24/11
|