1789edo: Difference between revisions

Eliora (talk | contribs)
4ed5/4 is hemiluna and the relationship is preserved in 1789edo
Eliora (talk | contribs)
Other: I'll move this to no-threes temps page
Line 19: Line 19:


=== Other ===
=== Other ===
1789edo can be used for the finite "French decimal" temperament - that is, where all the interval targets in just intonation are expressed as terminating decimals. For example, [[5/4]], [[25/16]], [[128/125]], [[32/25]], 625/512, etc. This rings particularly true for the French attempts to decimalize a lot more things than we are used to today. Using the maximal evenness method of finding rank-2 temperaments, we get a 1525 & 1789 temperament with comma basis 28824005/28792192, 200126927/200000000, 6106906624/6103515625 in the 2.5.7.11.13 subgroup.
1789edo can be used for the finite "French decimal" temperament - that is, where all the interval targets in just intonation are expressed as terminating decimals. For example, [[5/4]], [[25/16]], [[128/125]], [[32/25]], 625/512, etc.


Since the 5/4 of 1789edo is on the 576th step, a highly divisible number, 1789edo can replicate a lot of [[Ed5/4]] temperaments - more exactly those which are divisors of 576, and that includes all from [[2ed5/4]] to [[9ed5/4]], skipping [[7ed5/4]]. One such scale which stands for [[4ed5/4]], is a tuning for the [[hemiluna]] temperament in the 1789bd val in the 13-limit. It is also worth noting that 1789bd val is better tuned than the patent val.
Since the 5/4 of 1789edo is on the 576th step, a highly divisible number, 1789edo can replicate a lot of [[Ed5/4]] temperaments - more exactly those which are divisors of 576, and that includes all from [[2ed5/4]] to [[9ed5/4]], skipping [[7ed5/4]]. One such scale which stands for [[4ed5/4]], is a tuning for the [[hemiluna]] temperament in the 1789bd val in the 13-limit. It is also worth noting that 1789bd val is better tuned than the patent val.