66edo: Difference between revisions
Wikispaces>genewardsmith **Imported revision 251723404 - Original comment: ** |
Wikispaces>genewardsmith **Imported revision 251823648 - Original comment: ** |
||
Line 1: | Line 1: | ||
<h2>IMPORTED REVISION FROM WIKISPACES</h2> | <h2>IMPORTED REVISION FROM WIKISPACES</h2> | ||
This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br> | This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br> | ||
: This revision was by author [[User:genewardsmith|genewardsmith]] and made on <tt>2011-09-07 | : This revision was by author [[User:genewardsmith|genewardsmith]] and made on <tt>2011-09-07 23:54:40 UTC</tt>.<br> | ||
: The original revision id was <tt> | : The original revision id was <tt>251823648</tt>.<br> | ||
: The revision comment was: <tt></tt><br> | : The revision comment was: <tt></tt><br> | ||
The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br> | The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br> | ||
<h4>Original Wikitext content:</h4> | <h4>Original Wikitext content:</h4> | ||
<div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;white-space: pre-wrap ! important" class="old-revision-html">The 66 equal division divides the octave into 66 equal parts of 18.182 cents each. | <div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;white-space: pre-wrap ! important" class="old-revision-html">The 66 equal division divides the octave into 66 equal parts of 18.182 cents each. The patent is contorted in the 5-limit, tempering out the same commas 250/243, 2048/2025 and 3125/3072 as [[22edo]]. In the 7-limit it tempers out 686/675 and 1029/1024, in the 11-limit 55/54, 100/99 and 121/120, in the 13-limit 91/90, 169/168, 196/195 and in the 17-limit 136/135 and 256/255. It provides the [[optimal patent val]] for 11- and 13-limit [[Porcupine family#Ammonite|ammonite temperament]]. | ||
The 66b val tempers out 16875/16384 in the 5-limit, 126/125, 1728/1715 and 2401/2400 in the 7-limit, 99/98 and 385/384 in the 11-limit, and 105/104, 144/143 and 847/845 in the 13-limit.</pre></div> | |||
<h4>Original HTML content:</h4> | <h4>Original HTML content:</h4> | ||
<div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;width:200%;white-space: pre-wrap ! important" class="old-revision-html"><html><head><title>66edo</title></head><body>The 66 equal division divides the octave into 66 equal parts of 18.182 cents each. | <div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;width:200%;white-space: pre-wrap ! important" class="old-revision-html"><html><head><title>66edo</title></head><body>The 66 equal division divides the octave into 66 equal parts of 18.182 cents each. The patent is contorted in the 5-limit, tempering out the same commas 250/243, 2048/2025 and 3125/3072 as <a class="wiki_link" href="/22edo">22edo</a>. In the 7-limit it tempers out 686/675 and 1029/1024, in the 11-limit 55/54, 100/99 and 121/120, in the 13-limit 91/90, 169/168, 196/195 and in the 17-limit 136/135 and 256/255. It provides the <a class="wiki_link" href="/optimal%20patent%20val">optimal patent val</a> for 11- and 13-limit <a class="wiki_link" href="/Porcupine%20family#Ammonite">ammonite temperament</a>.<br /> | ||
<br /> | |||
The 66b val tempers out 16875/16384 in the 5-limit, 126/125, 1728/1715 and 2401/2400 in the 7-limit, 99/98 and 385/384 in the 11-limit, and 105/104, 144/143 and 847/845 in the 13-limit.</body></html></pre></div> |