65edo: Difference between revisions
Wikispaces>genewardsmith **Imported revision 189186325 - Original comment: ** |
Wikispaces>Osmiorisbendi **Imported revision 211600464 - Original comment: ** |
||
Line 1: | Line 1: | ||
<h2>IMPORTED REVISION FROM WIKISPACES</h2> | <h2>IMPORTED REVISION FROM WIKISPACES</h2> | ||
This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br> | This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br> | ||
: This revision was by author [[User: | : This revision was by author [[User:Osmiorisbendi|Osmiorisbendi]] and made on <tt>2011-03-17 19:58:04 UTC</tt>.<br> | ||
: The original revision id was <tt> | : The original revision id was <tt>211600464</tt>.<br> | ||
: The revision comment was: <tt></tt><br> | : The revision comment was: <tt></tt><br> | ||
The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br> | The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br> | ||
<h4>Original Wikitext content:</h4> | <h4>Original Wikitext content:</h4> | ||
<div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;white-space: pre-wrap ! important" class="old-revision-html">//65edo// divides the octave into 65 equal parts of 18.462 cents each. It can be characterized as the temperament which tempers out the schisma, 32805/32768, the sensipent comma, 78732/78125, and the wuerschmidt comma, 393216/390625. In the 7-limit, there are two different maps; the first is <65 103 151 182|, tempering out 126/125, 245/243 and 686/675, so that 65edo supports sensi temperament, and the second is <65 103 151 183|, tempering out 225/224, 3125/3097, 4000/3969 and 5120/5103, so that 65edo supports garibaldi temperament. In both cases, the tuning privileges the 5-limit over the 7-limit, as the 5-limit of 65 is quite accurate. The same can be said for the two different versions of 7-limit wuerschmidt temperament (wurschmidt and worschmidt) these two mappings provide.</pre></div> | <div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;white-space: pre-wrap ! important" class="old-revision-html">=<span style="color: #750063; font-size: 103%;">65 tone equal temperament</span>= | ||
//65edo// divides the octave into 65 equal parts of 18.462 cents each. It can be characterized as the temperament which tempers out the schisma, 32805/32768, the sensipent comma, 78732/78125, and the wuerschmidt comma, 393216/390625. In the 7-limit, there are two different maps; the first is <65 103 151 182|, tempering out 126/125, 245/243 and 686/675, so that 65edo supports sensi temperament, and the second is <65 103 151 183|, tempering out 225/224, 3125/3097, 4000/3969 and 5120/5103, so that 65edo supports garibaldi temperament. In both cases, the tuning privileges the 5-limit over the 7-limit, as the 5-limit of 65 is quite accurate. The same can be said for the two different versions of 7-limit wuerschmidt temperament (wurschmidt and worschmidt) these two mappings provide. | |||
==Intervals== | |||
|| Degrees of 65-EDO || Cents value || | |||
|| 0 || 0 || | |||
|| 1 || 18,4615 || | |||
|| 2 || 36,9231 || | |||
|| 3 || 55,3846 || | |||
|| 4 || 73,8462 || | |||
|| 5 || 92,3077 || | |||
|| 6 || 110,7692 || | |||
|| 7 || 129,2308 || | |||
|| 8 || 147,6923 || | |||
|| 9 || 166,1538 || | |||
|| 10 || 184,6154 || | |||
|| 11 || 203,0769 || | |||
|| 12 || 221,5385 || | |||
|| 13 || 240 || | |||
|| 14 || 258,4615 || | |||
|| 15 || 276,9231 || | |||
|| 16 || 295,3846 || | |||
|| 17 || 313,8462 || | |||
|| 18 || 332,3077 || | |||
|| 19 || 350,7692 || | |||
|| 20 || 369,2308 || | |||
|| 21 || 387,6923 || | |||
|| 22 || 406,1538 || | |||
|| 23 || 424,6154 || | |||
|| 24 || 443,0769 || | |||
|| 25 || 461,5385 || | |||
|| 26 || 480 || | |||
|| 27 || 498,4615 || | |||
|| 28 || 516,9231 || | |||
|| 29 || 535,3846 || | |||
|| 30 || 553,8462 || | |||
|| 31 || 572,3077 || | |||
|| 32 || 590,7692 || | |||
|| 33 || 609,2308 || | |||
|| 34 || 627,6923 || | |||
|| 35 || 646,1538 || | |||
|| 36 || 664,6154 || | |||
|| 37 || 683,0769 || | |||
|| 38 || 701,5385 || | |||
|| 39 || 720 || | |||
|| 40 || 738,4615 || | |||
|| 41 || 756,9231 || | |||
|| 42 || 775,3846 || | |||
|| 43 || 793,8462 || | |||
|| 44 || 812,3077 || | |||
|| 45 || 830,7692 || | |||
|| 46 || 849,2308 || | |||
|| 47 || 867,6923 || | |||
|| 48 || 886,1538 || | |||
|| 49 || 904,6154 || | |||
|| 50 || 923,0769 || | |||
|| 51 || 941,5385 || | |||
|| 52 || 960 || | |||
|| 53 || 978,4615 || | |||
|| 54 || 996,9231 || | |||
|| 55 || 1015,3846 || | |||
|| 56 || 1033,8462 || | |||
|| 57 || 1052,3077 || | |||
|| 58 || 1070,7692 || | |||
|| 59 || 1089,2308 || | |||
|| 60 || 1107,6923 || | |||
|| 61 || 1126,1538 || | |||
|| 62 || 1144,6154 || | |||
|| 63 || 1163,0769 || | |||
|| 64 || 1181,5385 ||</pre></div> | |||
<h4>Original HTML content:</h4> | <h4>Original HTML content:</h4> | ||
<div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;width:200%;white-space: pre-wrap ! important" class="old-revision-html"><html><head><title>65edo</title></head><body><em>65edo</em> divides the octave into 65 equal parts of 18.462 cents each. It can be characterized as the temperament which tempers out the schisma, 32805/32768, the sensipent comma, 78732/78125, and the wuerschmidt comma, 393216/390625. In the 7-limit, there are two different maps; the first is &lt;65 103 151 182|, tempering out 126/125, 245/243 and 686/675, so that 65edo supports sensi temperament, and the second is &lt;65 103 151 183|, tempering out 225/224, 3125/3097, 4000/3969 and 5120/5103, so that 65edo supports garibaldi temperament. In both cases, the tuning privileges the 5-limit over the 7-limit, as the 5-limit of 65 is quite accurate. The same can be said for the two different versions of 7-limit wuerschmidt temperament (wurschmidt and worschmidt) these two mappings provide.</body></html></pre></div> | <div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;width:200%;white-space: pre-wrap ! important" class="old-revision-html"><html><head><title>65edo</title></head><body><!-- ws:start:WikiTextHeadingRule:0:&lt;h1&gt; --><h1 id="toc0"><a name="x65 tone equal temperament"></a><!-- ws:end:WikiTextHeadingRule:0 --><span style="color: #750063; font-size: 103%;">65 tone equal temperament</span></h1> | ||
<em>65edo</em> divides the octave into 65 equal parts of 18.462 cents each. It can be characterized as the temperament which tempers out the schisma, 32805/32768, the sensipent comma, 78732/78125, and the wuerschmidt comma, 393216/390625. In the 7-limit, there are two different maps; the first is &lt;65 103 151 182|, tempering out 126/125, 245/243 and 686/675, so that 65edo supports sensi temperament, and the second is &lt;65 103 151 183|, tempering out 225/224, 3125/3097, 4000/3969 and 5120/5103, so that 65edo supports garibaldi temperament. In both cases, the tuning privileges the 5-limit over the 7-limit, as the 5-limit of 65 is quite accurate. The same can be said for the two different versions of 7-limit wuerschmidt temperament (wurschmidt and worschmidt) these two mappings provide.<br /> | |||
<br /> | |||
<!-- ws:start:WikiTextHeadingRule:2:&lt;h2&gt; --><h2 id="toc1"><a name="x65 tone equal temperament-Intervals"></a><!-- ws:end:WikiTextHeadingRule:2 -->Intervals</h2> | |||
<table class="wiki_table"> | |||
<tr> | |||
<td>Degrees of 65-EDO<br /> | |||
</td> | |||
<td>Cents value<br /> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td>0<br /> | |||
</td> | |||
<td>0<br /> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td>1<br /> | |||
</td> | |||
<td>18,4615<br /> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td>2<br /> | |||
</td> | |||
<td>36,9231<br /> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td>3<br /> | |||
</td> | |||
<td>55,3846<br /> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td>4<br /> | |||
</td> | |||
<td>73,8462<br /> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td>5<br /> | |||
</td> | |||
<td>92,3077<br /> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td>6<br /> | |||
</td> | |||
<td>110,7692<br /> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td>7<br /> | |||
</td> | |||
<td>129,2308<br /> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td>8<br /> | |||
</td> | |||
<td>147,6923<br /> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td>9<br /> | |||
</td> | |||
<td>166,1538<br /> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td>10<br /> | |||
</td> | |||
<td>184,6154<br /> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td>11<br /> | |||
</td> | |||
<td>203,0769<br /> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td>12<br /> | |||
</td> | |||
<td>221,5385<br /> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td>13<br /> | |||
</td> | |||
<td>240<br /> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td>14<br /> | |||
</td> | |||
<td>258,4615<br /> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td>15<br /> | |||
</td> | |||
<td>276,9231<br /> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td>16<br /> | |||
</td> | |||
<td>295,3846<br /> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td>17<br /> | |||
</td> | |||
<td>313,8462<br /> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td>18<br /> | |||
</td> | |||
<td>332,3077<br /> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td>19<br /> | |||
</td> | |||
<td>350,7692<br /> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td>20<br /> | |||
</td> | |||
<td>369,2308<br /> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td>21<br /> | |||
</td> | |||
<td>387,6923<br /> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td>22<br /> | |||
</td> | |||
<td>406,1538<br /> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td>23<br /> | |||
</td> | |||
<td>424,6154<br /> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td>24<br /> | |||
</td> | |||
<td>443,0769<br /> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td>25<br /> | |||
</td> | |||
<td>461,5385<br /> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td>26<br /> | |||
</td> | |||
<td>480<br /> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td>27<br /> | |||
</td> | |||
<td>498,4615<br /> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td>28<br /> | |||
</td> | |||
<td>516,9231<br /> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td>29<br /> | |||
</td> | |||
<td>535,3846<br /> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td>30<br /> | |||
</td> | |||
<td>553,8462<br /> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td>31<br /> | |||
</td> | |||
<td>572,3077<br /> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td>32<br /> | |||
</td> | |||
<td>590,7692<br /> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td>33<br /> | |||
</td> | |||
<td>609,2308<br /> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td>34<br /> | |||
</td> | |||
<td>627,6923<br /> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td>35<br /> | |||
</td> | |||
<td>646,1538<br /> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td>36<br /> | |||
</td> | |||
<td>664,6154<br /> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td>37<br /> | |||
</td> | |||
<td>683,0769<br /> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td>38<br /> | |||
</td> | |||
<td>701,5385<br /> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td>39<br /> | |||
</td> | |||
<td>720<br /> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td>40<br /> | |||
</td> | |||
<td>738,4615<br /> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td>41<br /> | |||
</td> | |||
<td>756,9231<br /> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td>42<br /> | |||
</td> | |||
<td>775,3846<br /> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td>43<br /> | |||
</td> | |||
<td>793,8462<br /> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td>44<br /> | |||
</td> | |||
<td>812,3077<br /> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td>45<br /> | |||
</td> | |||
<td>830,7692<br /> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td>46<br /> | |||
</td> | |||
<td>849,2308<br /> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td>47<br /> | |||
</td> | |||
<td>867,6923<br /> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td>48<br /> | |||
</td> | |||
<td>886,1538<br /> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td>49<br /> | |||
</td> | |||
<td>904,6154<br /> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td>50<br /> | |||
</td> | |||
<td>923,0769<br /> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td>51<br /> | |||
</td> | |||
<td>941,5385<br /> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td>52<br /> | |||
</td> | |||
<td>960<br /> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td>53<br /> | |||
</td> | |||
<td>978,4615<br /> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td>54<br /> | |||
</td> | |||
<td>996,9231<br /> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td>55<br /> | |||
</td> | |||
<td>1015,3846<br /> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td>56<br /> | |||
</td> | |||
<td>1033,8462<br /> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td>57<br /> | |||
</td> | |||
<td>1052,3077<br /> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td>58<br /> | |||
</td> | |||
<td>1070,7692<br /> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td>59<br /> | |||
</td> | |||
<td>1089,2308<br /> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td>60<br /> | |||
</td> | |||
<td>1107,6923<br /> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td>61<br /> | |||
</td> | |||
<td>1126,1538<br /> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td>62<br /> | |||
</td> | |||
<td>1144,6154<br /> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td>63<br /> | |||
</td> | |||
<td>1163,0769<br /> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td>64<br /> | |||
</td> | |||
<td>1181,5385<br /> | |||
</td> | |||
</tr> | |||
</table> | |||
</body></html></pre></div> |