Ringer scale: Difference between revisions

Godtone (talk | contribs)
m Proof of CS by linearity: removed an irrelevant line i forgot to remove
Godtone (talk | contribs)
m Proof of CS by linearity: corrected a little
Line 54: Line 54:
NOTE: This section is a work in progress.
NOTE: This section is a work in progress.


Because the CS property means that every occurrence of an interval must occur with the same number of steps, it suffices to show that every one-step interval is mapped by an appropriate [[val]] to one step. The proof of this is as follows.
Because the CS property means that every occurrence of an interval must occur with the same number of steps, it suffices to show that every one-step interval is mapped by an appropriate [[val]] to one step:


Consider an ''n''-note [[periodic scale]] with period an octave as being defined by a function '''f('''''k''''') : Z -> Q<sub>>0</sub>''' with '''f('''''nk''''') = 2'''<sup>''k''</sup>.
Consider an ''n''-note [[periodic scale]] with period an octave as being defined by a function '''f('''''k''''') : Z -> Q<sub>>0</sub>''' with '''f('''''nk''''') = 2'''<sup>''k''</sup>.


Then consider a [[val]] [[map]] '''m('''''k''''') : Q<sub>>0</sub> -> Z'''. The CS property guarantees that '''m(f('''''a''''')f('''''b''''')) =''' ''a'' '''+''' ''b'' and '''m(f('''''a''''')/f('''''b''''')) =''' ''a'' '''-''' ''b'' for all ''a''''',''' ''b'' in '''Z'''.
Then consider a [[val]] [[map]] '''m('''''k''''') : Q<sub>>0</sub> -> Z'''. The CS property would guarantee that '''m(f('''''a''''')f('''''b''''')) =''' ''a'' '''+''' ''b'' and '''m(f('''''a''''')/f('''''b''''')) =''' ''a'' '''-''' ''b'' for all ''a''''',''' ''b'' in '''Z''' but we cannot yet assume this.


Therefore if '''m(f('''''k'''''+1)/f('''''k''''')) = 1''' for all ''k'' in '''Z''', by induction it implies '''m(f('''''k'''''+'''''s''''')/f('''''k''''')) =''' ''s'' because the intervals from ''k'' to ''k''+1, from ''k''+1 to ''k''+2, ..., from ''k''+''s''-1 to ''k''+''s'' all multiply together.
Instead assume we find some val map '''m''' such that '''m(f('''''k'''''+1)/f('''''k''''')) = 1''' for all ''k'' in '''Z'''. (This can be checked by hand or by computer as we only need to check one period's worth of single-step intervals.)
 
By induction it implies '''m(f('''''k'''''+'''''s''''')/f('''''k''''')) =''' ''s'' because the intervals from ''k'' to ''k''+1, from ''k''+1 to ''k''+2, ..., from ''k''+''s''-1 to ''k''+''s'' all multiply together.


== Ringer scales ==
== Ringer scales ==