53edo: Difference between revisions
Wikispaces>genewardsmith **Imported revision 311999564 - Original comment: ** |
Wikispaces>guest **Imported revision 330095780 - Original comment: ** |
||
Line 1: | Line 1: | ||
<h2>IMPORTED REVISION FROM WIKISPACES</h2> | <h2>IMPORTED REVISION FROM WIKISPACES</h2> | ||
This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br> | This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br> | ||
: This revision was by author [[User: | : This revision was by author [[User:guest|guest]] and made on <tt>2012-05-04 13:23:33 UTC</tt>.<br> | ||
: The original revision id was <tt> | : The original revision id was <tt>330095780</tt>.<br> | ||
: The revision comment was: <tt></tt><br> | : The revision comment was: <tt></tt><br> | ||
The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br> | The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br> | ||
Line 8: | Line 8: | ||
<div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;white-space: pre-wrap ! important" class="old-revision-html">[[toc|flat]] | <div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;white-space: pre-wrap ! important" class="old-revision-html">[[toc|flat]] | ||
=Theory= | =Theory= | ||
The famous //53 equal division// divides the octave into 53 equal comma-sized parts of 22.642 cents each. It is notable as a [[5-limit]] system, a fact apparently first noted by Isaac Newton, tempering out the schisma, 32805/32768, the kleisma, 15625/15552, the amity comma, 1600000/1594323 and the semicomma, 2109375/2097152. In the 7-limit it tempers out 225/224, 1728/1715 and 3125/3087, the marvel comma, the gariboh, and the orwell comma. In the 11-limit, it tempers out 99/98 and 121/120, and is the [[optimal patent val]] for [[Nuwell family|Big Brother]] temperament, which tempers out both, as well as 11-limit [[Semicomma family|orwell temperament]], which also tempers out the 11-limit comma 176/175. In the 13-limit, it tempers out 169/168 and 245/243, and gives the optimal patent val for [[Marvel family|athene temperament]]. It is the eighth [[The Riemann Zeta Function and Tuning#Zeta%20EDO%20lists|zeta integral edo]] and the 16th [[prime numbers|prime]] edo, following [[47edo]] and coming before [[59edo]]. | The famous //53 equal division// divides the octave into 53 equal comma-sized parts of 22.642 cents each. It is notable as a [[xenharmonic/5-limit|5-limit]] system, a fact apparently first noted by Isaac Newton, tempering out the schisma, 32805/32768, the kleisma, 15625/15552, the amity comma, 1600000/1594323 and the semicomma, 2109375/2097152. In the 7-limit it tempers out 225/224, 1728/1715 and 3125/3087, the marvel comma, the gariboh, and the orwell comma. In the 11-limit, it tempers out 99/98 and 121/120, and is the [[xenharmonic/optimal patent val|optimal patent val]] for [[xenharmonic/Nuwell family|Big Brother]] temperament, which tempers out both, as well as 11-limit [[xenharmonic/Semicomma family|orwell temperament]], which also tempers out the 11-limit comma 176/175. In the 13-limit, it tempers out 169/168 and 245/243, and gives the optimal patent val for [[xenharmonic/Marvel family|athene temperament]]. It is the eighth [[xenharmonic/The Riemann Zeta Function and Tuning#Zeta%20EDO%20lists|zeta integral edo]] and the 16th [[xenharmonic/prime numbers|prime]] edo, following [[xenharmonic/47edo|47edo]] and coming before [[xenharmonic/59edo|59edo]]. | ||
53EDO has also found a certain dissemination as an EDO tuning for [[Arabic, Turkish, Persian|Arabic/Turkish/Persian music]] . | 53EDO has also found a certain dissemination as an EDO tuning for [[xenharmonic/Arabic, Turkish, Persian|Arabic/Turkish/Persian music]] . | ||
[[http://en.wikipedia.org/wiki/53_equal_temperament|Wikipeda article about 53edo]] | [[http://en.wikipedia.org/wiki/53_equal_temperament|Wikipeda article about 53edo]] | ||
=Just Approximation= | =Just Approximation= | ||
53edo provides excellent approximations for the classic 5-limit [[just]] chords and scales, such as the Ptolemy-Zarlino "just major" scale. | 53edo provides excellent approximations for the classic 5-limit [[xenharmonic/just|just]] chords and scales, such as the Ptolemy-Zarlino "just major" scale. | ||
||~ interval ||~ size ||~ diff || | ||~ interval ||~ size ||~ diff || | ||
|| perfect fifth ||= 31 || −0.07 cents || | || perfect fifth ||= 31 || −0.07 cents || | ||
Line 21: | Line 21: | ||
|| minor third ||= 14 || +1.34 cents || | || minor third ||= 14 || +1.34 cents || | ||
|| major tone ||= 9 || −0.14 cents || | || major tone ||= 9 || −0.14 cents || | ||
|| | || minor tone ||= 8 || −1.27 cents || | ||
|| diat. semitone ||= 5 || +1.48 cents || | || diat. semitone ||= 5 || +1.48 cents || | ||
One notable property of 53EDO is that it offers good approximations for both pure and pythagorean major thirds. | One notable property of 53EDO is that it offers good approximations for both pure and pythagorean major thirds. | ||
The perfect fifth is almost perfectly equal to the just interval 3/2, with only a 0.07 cent difference! 53EDO is practically equal to an extended Pythagorean. The 14- and 17- degree intervals are also very close to 6/5 and 5/4 respectively, and so 5-limit tuning can also be closely approximated. In addition, the 43-degree interval is only 4.8 cents away from the just ratio 7/4, so 53EDO can also be used for 7-limit harmony, tempering out the [[septimal kleisma]], 225/224. | The perfect fifth is almost perfectly equal to the just interval 3/2, with only a 0.07 cent difference! 53EDO is practically equal to an extended Pythagorean. The 14- and 17- degree intervals are also very close to 6/5 and 5/4 respectively, and so 5-limit tuning can also be closely approximated. In addition, the 43-degree interval is only 4.8 cents away from the just ratio 7/4, so 53EDO can also be used for 7-limit harmony, tempering out the [[xenharmonic/septimal kleisma|septimal kleisma]], 225/224. | ||
=Intervals= | =Intervals= | ||
Line 32: | Line 32: | ||
|| 0 || 0.00 || || | || 0 || 0.00 || || | ||
|| 1 || 22.64 || || | || 1 || 22.64 || || | ||
|| 2 || 45.28 || [[Quartonic]] || | || 2 || 45.28 || [[xenharmonic/Quartonic|Quartonic]] || | ||
|| 3 || 67.92 || || | || 3 || 67.92 || || | ||
|| 4 || 90.57 || || | || 4 || 90.57 || || | ||
|| 5 || 113.21 || || | || 5 || 113.21 || || | ||
|| 6 || 135.85 || || | || 6 || 135.85 || || | ||
|| 7 || 158.49 || [[Hemikleismic]] || | || 7 || 158.49 || [[xenharmonic/Hemikleismic|Hemikleismic]] || | ||
|| 8 || 181.13 || || | || 8 || 181.13 || || | ||
|| 9 || 203.77 || || | || 9 || 203.77 || || | ||
|| 10 || 226.42 || || | || 10 || 226.42 || || | ||
|| 11 || 249.06 || [[Hemischis]] || | || 11 || 249.06 || [[xenharmonic/Hemischis|Hemischis]] || | ||
|| 12 || 271.70 || [[Orwell]] || | || 12 || 271.70 || [[xenharmonic/Orwell|Orwell]] || | ||
|| 13 || 294.34 || || | || 13 || 294.34 || || | ||
|| 14 || 316.98 || [[Hanson]]/[[Catakleismic]] || | || 14 || 316.98 || [[xenharmonic/Hanson|Hanson]]/[[xenharmonic/Catakleismic|Catakleismic]] || | ||
|| 15 || 339.62 || [[Amity]]/[[Hitchcock]] || | || 15 || 339.62 || [[xenharmonic/Amity|Amity]]/[[xenharmonic/Hitchcock|Hitchcock]] || | ||
|| 16 || 362.26 || || | || 16 || 362.26 || || | ||
|| 17 || 384.91 || || | || 17 || 384.91 || || | ||
Line 51: | Line 51: | ||
|| 19 || 430.19 || || | || 19 || 430.19 || || | ||
|| 20 || 452.83 || || | || 20 || 452.83 || || | ||
|| 21 || 475.47 || [[Vulture]]/[[Buzzard]] || | || 21 || 475.47 || [[xenharmonic/Vulture|Vulture]]/[[xenharmonic/Buzzard|Buzzard]] || | ||
|| 22 || 498.11 || || | || 22 || 498.11 || || | ||
|| 23 || 520.75 || || | || 23 || 520.75 || || | ||
|| 24 || 543.40 || || | || 24 || 543.40 || || | ||
|| 25 || 566.04 || [[Tricot]] || | || 25 || 566.04 || [[xenharmonic/Tricot|Tricot]] || | ||
|| 26 || 588.68 || || | || 26 || 588.68 || || | ||
|| 27 || 611.32 || || | || 27 || 611.32 || || | ||
Line 61: | Line 61: | ||
|| 29 || 656.60 || || | || 29 || 656.60 || || | ||
|| 30 || 679.25 || || | || 30 || 679.25 || || | ||
|| 31 || 701.89 || [[Helmholtz]]/[[Garibaldi]] || | || 31 || 701.89 || [[xenharmonic/Helmholtz|Helmholtz]]/[[xenharmonic/Garibaldi|Garibaldi]] || | ||
|| 32 || 724.53 || || | || 32 || 724.53 || || | ||
|| 33 || 747.17 || || | || 33 || 747.17 || || | ||
Line 86: | Line 86: | ||
=Compositions= | =Compositions= | ||
[[http://clones.soonlabel.com/public/micro/gene_ward_smith/Others/Khramov/prelude1-53.mp3|Bach WTC1 Prelude 1 in 53]] by Bach and [[Mykhaylo Khramov]] | [[http://clones.soonlabel.com/public/micro/gene_ward_smith/Others/Khramov/prelude1-53.mp3|Bach WTC1 Prelude 1 in 53]] by Bach and [[xenharmonic/Mykhaylo Khramov|Mykhaylo Khramov]] | ||
[[http://clones.soonlabel.com/public/micro/gene_ward_smith/Others/Khramov/fugue1-53.mp3|Bach WTC1 Fugue 1 in 53]] by Bach and Mykhaylo Khramov | [[http://clones.soonlabel.com/public/micro/gene_ward_smith/Others/Khramov/fugue1-53.mp3|Bach WTC1 Fugue 1 in 53]] by Bach and Mykhaylo Khramov | ||
[[http://www.geocities.com/Bernalorg/Excerpts/n53.wav|53edo guitar study]] by Novaro <-- broken link? | [[http://www.geocities.com/Bernalorg/Excerpts/n53.wav|53edo guitar study]] by Novaro <-- broken link? | ||
[[http://bumpermusic.blogspot.com/2007/05/whisper-song-in-53-edo-now-526-slower.html|Whisper Song in 53EDO]] [[http://clones.soonlabel.com/public/micro/gene_ward_smith/Others/Prent/sing53-c5-slow.mp3|play]] by [[Prent Rodgers]] | [[http://bumpermusic.blogspot.com/2007/05/whisper-song-in-53-edo-now-526-slower.html|Whisper Song in 53EDO]] [[http://clones.soonlabel.com/public/micro/gene_ward_smith/Others/Prent/sing53-c5-slow.mp3|play]] by [[xenharmonic/Prent Rodgers|Prent Rodgers]] | ||
[[http://www.archive.org/details/TrioInOrwell|Trio in Orwell]] [[http://www.archive.org/download/TrioInOrwell/TrioInOrwell.mp3|play]] by [[Gene Ward Smith]] | [[http://www.archive.org/details/TrioInOrwell|Trio in Orwell]] [[http://www.archive.org/download/TrioInOrwell/TrioInOrwell.mp3|play]] by [[xenharmonic/Gene Ward Smith|Gene Ward Smith]] | ||
[[http://www.akjmusic.com/audio/desert_prayer.mp3|Desert Prayer]] by [[http://www.akjmusic.com|Aaron Krister Johnson]] | [[http://www.akjmusic.com/audio/desert_prayer.mp3|Desert Prayer]] by [[http://www.akjmusic.com/|Aaron Krister Johnson]] | ||
[[@http://andrewheathwaite.bandcamp.com/track/elf-dine-on-ho-ho|Elf Dine on Ho Ho]] [[http://micro.soonlabel.com/gene_ward_smith/Others/Heathwaite/Newbeams/Andrew%20Heathwaite%20-%20Newbeams%20-%2005%20Elf%20Dine%20on%20Ho%20Ho.mp3|play]] and [[@http://andrewheathwaite.bandcamp.com/track/spun|Spun]] [[http://micro.soonlabel.com/gene_ward_smith/Others/Heathwaite/Newbeams/Andrew%20Heathwaite%20-%20Newbeams%20-%2008%20Spun.mp3|play]] by [[Andrew Heathwaite]]</pre></div> | [[@http://andrewheathwaite.bandcamp.com/track/elf-dine-on-ho-ho|Elf Dine on Ho Ho]] [[http://micro.soonlabel.com/gene_ward_smith/Others/Heathwaite/Newbeams/Andrew%20Heathwaite%20-%20Newbeams%20-%2005%20Elf%20Dine%20on%20Ho%20Ho.mp3|play]] and [[@http://andrewheathwaite.bandcamp.com/track/spun|Spun]] [[http://micro.soonlabel.com/gene_ward_smith/Others/Heathwaite/Newbeams/Andrew%20Heathwaite%20-%20Newbeams%20-%2008%20Spun.mp3|play]] by [[xenharmonic/Andrew Heathwaite|Andrew Heathwaite]]</pre></div> | ||
<h4>Original HTML content:</h4> | <h4>Original HTML content:</h4> | ||
<div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;width:200%;white-space: pre-wrap ! important" class="old-revision-html"><html><head><title>53edo</title></head><body><!-- ws:start:WikiTextTocRule:8:&lt;img id=&quot;wikitext@@toc@@flat&quot; class=&quot;WikiMedia WikiMediaTocFlat&quot; title=&quot;Table of Contents&quot; src=&quot;/site/embedthumbnail/toc/flat?w=100&amp;h=16&quot;/&gt; --><!-- ws:end:WikiTextTocRule:8 --><!-- ws:start:WikiTextTocRule:9: --><a href="#Theory">Theory</a><!-- ws:end:WikiTextTocRule:9 --><!-- ws:start:WikiTextTocRule:10: --> | <a href="#Just Approximation">Just Approximation</a><!-- ws:end:WikiTextTocRule:10 --><!-- ws:start:WikiTextTocRule:11: --> | <a href="#Intervals">Intervals</a><!-- ws:end:WikiTextTocRule:11 --><!-- ws:start:WikiTextTocRule:12: --> | <a href="#Compositions">Compositions</a><!-- ws:end:WikiTextTocRule:12 --><!-- ws:start:WikiTextTocRule:13: --> | <div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;width:200%;white-space: pre-wrap ! important" class="old-revision-html"><html><head><title>53edo</title></head><body><!-- ws:start:WikiTextTocRule:8:&lt;img id=&quot;wikitext@@toc@@flat&quot; class=&quot;WikiMedia WikiMediaTocFlat&quot; title=&quot;Table of Contents&quot; src=&quot;/site/embedthumbnail/toc/flat?w=100&amp;h=16&quot;/&gt; --><!-- ws:end:WikiTextTocRule:8 --><!-- ws:start:WikiTextTocRule:9: --><a href="#Theory">Theory</a><!-- ws:end:WikiTextTocRule:9 --><!-- ws:start:WikiTextTocRule:10: --> | <a href="#Just Approximation">Just Approximation</a><!-- ws:end:WikiTextTocRule:10 --><!-- ws:start:WikiTextTocRule:11: --> | <a href="#Intervals">Intervals</a><!-- ws:end:WikiTextTocRule:11 --><!-- ws:start:WikiTextTocRule:12: --> | <a href="#Compositions">Compositions</a><!-- ws:end:WikiTextTocRule:12 --><!-- ws:start:WikiTextTocRule:13: --> | ||
<!-- ws:end:WikiTextTocRule:13 --><!-- ws:start:WikiTextHeadingRule:0:&lt;h1&gt; --><h1 id="toc0"><a name="Theory"></a><!-- ws:end:WikiTextHeadingRule:0 -->Theory</h1> | <!-- ws:end:WikiTextTocRule:13 --><!-- ws:start:WikiTextHeadingRule:0:&lt;h1&gt; --><h1 id="toc0"><a name="Theory"></a><!-- ws:end:WikiTextHeadingRule:0 -->Theory</h1> | ||
The famous <em>53 equal division</em> divides the octave into 53 equal comma-sized parts of 22.642 cents each. It is notable as a <a class="wiki_link" href="/5-limit">5-limit</a> system, a fact apparently first noted by Isaac Newton, tempering out the schisma, 32805/32768, the kleisma, 15625/15552, the amity comma, 1600000/1594323 and the semicomma, 2109375/2097152. In the 7-limit it tempers out 225/224, 1728/1715 and 3125/3087, the marvel comma, the gariboh, and the orwell comma. In the 11-limit, it tempers out 99/98 and 121/120, and is the <a class="wiki_link" href="/optimal%20patent%20val">optimal patent val</a> for <a class="wiki_link" href="/Nuwell%20family">Big Brother</a> temperament, which tempers out both, as well as 11-limit <a class="wiki_link" href="/Semicomma%20family">orwell temperament</a>, which also tempers out the 11-limit comma 176/175. In the 13-limit, it tempers out 169/168 and 245/243, and gives the optimal patent val for <a class="wiki_link" href="/Marvel%20family">athene temperament</a>. It is the eighth <a class="wiki_link" href="/The%20Riemann%20Zeta%20Function%20and%20Tuning#Zeta%20EDO%20lists">zeta integral edo</a> and the 16th <a class="wiki_link" href="/prime%20numbers">prime</a> edo, following <a class="wiki_link" href="/47edo">47edo</a> and coming before <a class="wiki_link" href="/59edo">59edo</a>.<br /> | The famous <em>53 equal division</em> divides the octave into 53 equal comma-sized parts of 22.642 cents each. It is notable as a <a class="wiki_link" href="http://xenharmonic.wikispaces.com/5-limit">5-limit</a> system, a fact apparently first noted by Isaac Newton, tempering out the schisma, 32805/32768, the kleisma, 15625/15552, the amity comma, 1600000/1594323 and the semicomma, 2109375/2097152. In the 7-limit it tempers out 225/224, 1728/1715 and 3125/3087, the marvel comma, the gariboh, and the orwell comma. In the 11-limit, it tempers out 99/98 and 121/120, and is the <a class="wiki_link" href="http://xenharmonic.wikispaces.com/optimal%20patent%20val">optimal patent val</a> for <a class="wiki_link" href="http://xenharmonic.wikispaces.com/Nuwell%20family">Big Brother</a> temperament, which tempers out both, as well as 11-limit <a class="wiki_link" href="http://xenharmonic.wikispaces.com/Semicomma%20family">orwell temperament</a>, which also tempers out the 11-limit comma 176/175. In the 13-limit, it tempers out 169/168 and 245/243, and gives the optimal patent val for <a class="wiki_link" href="http://xenharmonic.wikispaces.com/Marvel%20family">athene temperament</a>. It is the eighth <a class="wiki_link" href="http://xenharmonic.wikispaces.com/The%20Riemann%20Zeta%20Function%20and%20Tuning#Zeta%20EDO%20lists">zeta integral edo</a> and the 16th <a class="wiki_link" href="http://xenharmonic.wikispaces.com/prime%20numbers">prime</a> edo, following <a class="wiki_link" href="http://xenharmonic.wikispaces.com/47edo">47edo</a> and coming before <a class="wiki_link" href="http://xenharmonic.wikispaces.com/59edo">59edo</a>.<br /> | ||
<br /> | <br /> | ||
53EDO has also found a certain dissemination as an EDO tuning for <a class="wiki_link" href="/Arabic%2C%20Turkish%2C%20Persian">Arabic/Turkish/Persian music</a> .<br /> | 53EDO has also found a certain dissemination as an EDO tuning for <a class="wiki_link" href="http://xenharmonic.wikispaces.com/-/Arabic%2C%20Turkish%2C%20Persian%7CArabic/Turkish/Persian%20music">xenharmonic/Arabic, Turkish, Persian|Arabic/Turkish/Persian music</a> .<br /> | ||
<br /> | <br /> | ||
<a class="wiki_link_ext" href="http://en.wikipedia.org/wiki/53_equal_temperament" rel="nofollow">Wikipeda article about 53edo</a><br /> | <a class="wiki_link_ext" href="http://en.wikipedia.org/wiki/53_equal_temperament" rel="nofollow">Wikipeda article about 53edo</a><br /> | ||
<br /> | <br /> | ||
<!-- ws:start:WikiTextHeadingRule:2:&lt;h1&gt; --><h1 id="toc1"><a name="Just Approximation"></a><!-- ws:end:WikiTextHeadingRule:2 -->Just Approximation</h1> | <!-- ws:start:WikiTextHeadingRule:2:&lt;h1&gt; --><h1 id="toc1"><a name="Just Approximation"></a><!-- ws:end:WikiTextHeadingRule:2 -->Just Approximation</h1> | ||
53edo provides excellent approximations for the classic 5-limit <a class="wiki_link" href="/just">just</a> chords and scales, such as the Ptolemy-Zarlino &quot;just major&quot; scale.<br /> | 53edo provides excellent approximations for the classic 5-limit <a class="wiki_link" href="http://xenharmonic.wikispaces.com/just">just</a> chords and scales, such as the Ptolemy-Zarlino &quot;just major&quot; scale.<br /> | ||
Line 148: | Line 148: | ||
</tr> | </tr> | ||
<tr> | <tr> | ||
<td> | <td>minor tone<br /> | ||
</td> | </td> | ||
<td style="text-align: center;">8<br /> | <td style="text-align: center;">8<br /> | ||
Line 168: | Line 168: | ||
One notable property of 53EDO is that it offers good approximations for both pure and pythagorean major thirds.<br /> | One notable property of 53EDO is that it offers good approximations for both pure and pythagorean major thirds.<br /> | ||
<br /> | <br /> | ||
The perfect fifth is almost perfectly equal to the just interval 3/2, with only a 0.07 cent difference! 53EDO is practically equal to an extended Pythagorean. The 14- and 17- degree intervals are also very close to 6/5 and 5/4 respectively, and so 5-limit tuning can also be closely approximated. In addition, the 43-degree interval is only 4.8 cents away from the just ratio 7/4, so 53EDO can also be used for 7-limit harmony, tempering out the <a class="wiki_link" href="/septimal%20kleisma">septimal kleisma</a>, 225/224.<br /> | The perfect fifth is almost perfectly equal to the just interval 3/2, with only a 0.07 cent difference! 53EDO is practically equal to an extended Pythagorean. The 14- and 17- degree intervals are also very close to 6/5 and 5/4 respectively, and so 5-limit tuning can also be closely approximated. In addition, the 43-degree interval is only 4.8 cents away from the just ratio 7/4, so 53EDO can also be used for 7-limit harmony, tempering out the <a class="wiki_link" href="http://xenharmonic.wikispaces.com/septimal%20kleisma">septimal kleisma</a>, 225/224.<br /> | ||
<br /> | <br /> | ||
<!-- ws:start:WikiTextHeadingRule:4:&lt;h1&gt; --><h1 id="toc2"><a name="Intervals"></a><!-- ws:end:WikiTextHeadingRule:4 -->Intervals</h1> | <!-- ws:start:WikiTextHeadingRule:4:&lt;h1&gt; --><h1 id="toc2"><a name="Intervals"></a><!-- ws:end:WikiTextHeadingRule:4 -->Intervals</h1> | ||
Line 203: | Line 203: | ||
<td>45.28<br /> | <td>45.28<br /> | ||
</td> | </td> | ||
<td><a class="wiki_link" href="/Quartonic">Quartonic</a><br /> | <td><a class="wiki_link" href="http://xenharmonic.wikispaces.com/Quartonic">Quartonic</a><br /> | ||
</td> | </td> | ||
</tr> | </tr> | ||
Line 243: | Line 243: | ||
<td>158.49<br /> | <td>158.49<br /> | ||
</td> | </td> | ||
<td><a class="wiki_link" href="/Hemikleismic">Hemikleismic</a><br /> | <td><a class="wiki_link" href="http://xenharmonic.wikispaces.com/Hemikleismic">Hemikleismic</a><br /> | ||
</td> | </td> | ||
</tr> | </tr> | ||
Line 275: | Line 275: | ||
<td>249.06<br /> | <td>249.06<br /> | ||
</td> | </td> | ||
<td><a class="wiki_link" href="/Hemischis">Hemischis</a><br /> | <td><a class="wiki_link" href="http://xenharmonic.wikispaces.com/Hemischis">Hemischis</a><br /> | ||
</td> | </td> | ||
</tr> | </tr> | ||
Line 283: | Line 283: | ||
<td>271.70<br /> | <td>271.70<br /> | ||
</td> | </td> | ||
<td><a class="wiki_link" href="/Orwell">Orwell</a><br /> | <td><a class="wiki_link" href="http://xenharmonic.wikispaces.com/Orwell">Orwell</a><br /> | ||
</td> | </td> | ||
</tr> | </tr> | ||
Line 299: | Line 299: | ||
<td>316.98<br /> | <td>316.98<br /> | ||
</td> | </td> | ||
<td><a class="wiki_link" href="/Hanson">Hanson</a>/<a class="wiki_link" href="/Catakleismic">Catakleismic</a><br /> | <td><a class="wiki_link" href="http://xenharmonic.wikispaces.com/Hanson">Hanson</a>/<a class="wiki_link" href="http://xenharmonic.wikispaces.com/Catakleismic">Catakleismic</a><br /> | ||
</td> | </td> | ||
</tr> | </tr> | ||
Line 307: | Line 307: | ||
<td>339.62<br /> | <td>339.62<br /> | ||
</td> | </td> | ||
<td><a class="wiki_link" href="/Amity">Amity</a>/<a class="wiki_link" href="/Hitchcock">Hitchcock</a><br /> | <td><a class="wiki_link" href="http://xenharmonic.wikispaces.com/Amity">Amity</a>/<a class="wiki_link" href="http://xenharmonic.wikispaces.com/Hitchcock">Hitchcock</a><br /> | ||
</td> | </td> | ||
</tr> | </tr> | ||
Line 355: | Line 355: | ||
<td>475.47<br /> | <td>475.47<br /> | ||
</td> | </td> | ||
<td><a class="wiki_link" href="/Vulture">Vulture</a>/<a class="wiki_link" href="/Buzzard">Buzzard</a><br /> | <td><a class="wiki_link" href="http://xenharmonic.wikispaces.com/Vulture">Vulture</a>/<a class="wiki_link" href="http://xenharmonic.wikispaces.com/Buzzard">Buzzard</a><br /> | ||
</td> | </td> | ||
</tr> | </tr> | ||
Line 387: | Line 387: | ||
<td>566.04<br /> | <td>566.04<br /> | ||
</td> | </td> | ||
<td><a class="wiki_link" href="/Tricot">Tricot</a><br /> | <td><a class="wiki_link" href="http://xenharmonic.wikispaces.com/Tricot">Tricot</a><br /> | ||
</td> | </td> | ||
</tr> | </tr> | ||
Line 435: | Line 435: | ||
<td>701.89<br /> | <td>701.89<br /> | ||
</td> | </td> | ||
<td><a class="wiki_link" href="/Helmholtz">Helmholtz</a>/<a class="wiki_link" href="/Garibaldi">Garibaldi</a><br /> | <td><a class="wiki_link" href="http://xenharmonic.wikispaces.com/Helmholtz">Helmholtz</a>/<a class="wiki_link" href="http://xenharmonic.wikispaces.com/Garibaldi">Garibaldi</a><br /> | ||
</td> | </td> | ||
</tr> | </tr> | ||
Line 611: | Line 611: | ||
<br /> | <br /> | ||
<!-- ws:start:WikiTextHeadingRule:6:&lt;h1&gt; --><h1 id="toc3"><a name="Compositions"></a><!-- ws:end:WikiTextHeadingRule:6 -->Compositions</h1> | <!-- ws:start:WikiTextHeadingRule:6:&lt;h1&gt; --><h1 id="toc3"><a name="Compositions"></a><!-- ws:end:WikiTextHeadingRule:6 -->Compositions</h1> | ||
<a class="wiki_link_ext" href="http://clones.soonlabel.com/public/micro/gene_ward_smith/Others/Khramov/prelude1-53.mp3" rel="nofollow">Bach WTC1 Prelude 1 in 53</a> by Bach and <a class="wiki_link" href="/Mykhaylo%20Khramov">Mykhaylo Khramov</a><br /> | <a class="wiki_link_ext" href="http://clones.soonlabel.com/public/micro/gene_ward_smith/Others/Khramov/prelude1-53.mp3" rel="nofollow">Bach WTC1 Prelude 1 in 53</a> by Bach and <a class="wiki_link" href="http://xenharmonic.wikispaces.com/Mykhaylo%20Khramov">Mykhaylo Khramov</a><br /> | ||
<a class="wiki_link_ext" href="http://clones.soonlabel.com/public/micro/gene_ward_smith/Others/Khramov/fugue1-53.mp3" rel="nofollow">Bach WTC1 Fugue 1 in 53</a> by Bach and Mykhaylo Khramov<br /> | <a class="wiki_link_ext" href="http://clones.soonlabel.com/public/micro/gene_ward_smith/Others/Khramov/fugue1-53.mp3" rel="nofollow">Bach WTC1 Fugue 1 in 53</a> by Bach and Mykhaylo Khramov<br /> | ||
<a class="wiki_link_ext" href="http://www.geocities.com/Bernalorg/Excerpts/n53.wav" rel="nofollow">53edo guitar study</a> by Novaro &lt;-- broken link?<br /> | <a class="wiki_link_ext" href="http://www.geocities.com/Bernalorg/Excerpts/n53.wav" rel="nofollow">53edo guitar study</a> by Novaro &lt;-- broken link?<br /> | ||
<a class="wiki_link_ext" href="http://bumpermusic.blogspot.com/2007/05/whisper-song-in-53-edo-now-526-slower.html" rel="nofollow">Whisper Song in 53EDO</a> <a class="wiki_link_ext" href="http://clones.soonlabel.com/public/micro/gene_ward_smith/Others/Prent/sing53-c5-slow.mp3" rel="nofollow">play</a> by <a class="wiki_link" href="/Prent%20Rodgers">Prent Rodgers</a><br /> | <a class="wiki_link_ext" href="http://bumpermusic.blogspot.com/2007/05/whisper-song-in-53-edo-now-526-slower.html" rel="nofollow">Whisper Song in 53EDO</a> <a class="wiki_link_ext" href="http://clones.soonlabel.com/public/micro/gene_ward_smith/Others/Prent/sing53-c5-slow.mp3" rel="nofollow">play</a> by <a class="wiki_link" href="http://xenharmonic.wikispaces.com/Prent%20Rodgers">Prent Rodgers</a><br /> | ||
<a class="wiki_link_ext" href="http://www.archive.org/details/TrioInOrwell" rel="nofollow">Trio in Orwell</a> <a class="wiki_link_ext" href="http://www.archive.org/download/TrioInOrwell/TrioInOrwell.mp3" rel="nofollow">play</a> by <a class="wiki_link" href="/Gene%20Ward%20Smith">Gene Ward Smith</a><br /> | <a class="wiki_link_ext" href="http://www.archive.org/details/TrioInOrwell" rel="nofollow">Trio in Orwell</a> <a class="wiki_link_ext" href="http://www.archive.org/download/TrioInOrwell/TrioInOrwell.mp3" rel="nofollow">play</a> by <a class="wiki_link" href="http://xenharmonic.wikispaces.com/Gene%20Ward%20Smith">Gene Ward Smith</a><br /> | ||
<a class="wiki_link_ext" href="http://www.akjmusic.com/audio/desert_prayer.mp3" rel="nofollow">Desert Prayer</a> by <a class="wiki_link_ext" href="http://www.akjmusic.com" rel="nofollow">Aaron Krister Johnson</a><br /> | <a class="wiki_link_ext" href="http://www.akjmusic.com/audio/desert_prayer.mp3" rel="nofollow">Desert Prayer</a> by <a class="wiki_link_ext" href="http://www.akjmusic.com/" rel="nofollow">Aaron Krister Johnson</a><br /> | ||
<a class="wiki_link_ext" href="http://andrewheathwaite.bandcamp.com/track/elf-dine-on-ho-ho" rel="nofollow" target="_blank">Elf Dine on Ho Ho</a> <a class="wiki_link_ext" href="http://micro.soonlabel.com/gene_ward_smith/Others/Heathwaite/Newbeams/Andrew%20Heathwaite%20-%20Newbeams%20-%2005%20Elf%20Dine%20on%20Ho%20Ho.mp3" rel="nofollow">play</a> and <a class="wiki_link_ext" href="http://andrewheathwaite.bandcamp.com/track/spun" rel="nofollow" target="_blank">Spun</a> <a class="wiki_link_ext" href="http://micro.soonlabel.com/gene_ward_smith/Others/Heathwaite/Newbeams/Andrew%20Heathwaite%20-%20Newbeams%20-%2008%20Spun.mp3" rel="nofollow">play</a> by <a class="wiki_link" href="/Andrew%20Heathwaite">Andrew Heathwaite</a></body></html></pre></div> | <a class="wiki_link_ext" href="http://andrewheathwaite.bandcamp.com/track/elf-dine-on-ho-ho" rel="nofollow" target="_blank">Elf Dine on Ho Ho</a> <a class="wiki_link_ext" href="http://micro.soonlabel.com/gene_ward_smith/Others/Heathwaite/Newbeams/Andrew%20Heathwaite%20-%20Newbeams%20-%2005%20Elf%20Dine%20on%20Ho%20Ho.mp3" rel="nofollow">play</a> and <a class="wiki_link_ext" href="http://andrewheathwaite.bandcamp.com/track/spun" rel="nofollow" target="_blank">Spun</a> <a class="wiki_link_ext" href="http://micro.soonlabel.com/gene_ward_smith/Others/Heathwaite/Newbeams/Andrew%20Heathwaite%20-%20Newbeams%20-%2008%20Spun.mp3" rel="nofollow">play</a> by <a class="wiki_link" href="http://xenharmonic.wikispaces.com/Andrew%20Heathwaite">Andrew Heathwaite</a></body></html></pre></div> |