53edo: Difference between revisions
Wikispaces>genewardsmith **Imported revision 448523952 - Original comment: ** |
Wikispaces>hstraub **Imported revision 471405512 - Original comment: ** |
||
Line 1: | Line 1: | ||
<h2>IMPORTED REVISION FROM WIKISPACES</h2> | <h2>IMPORTED REVISION FROM WIKISPACES</h2> | ||
This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br> | This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br> | ||
: This revision was by author [[User: | : This revision was by author [[User:hstraub|hstraub]] and made on <tt>2013-11-22 10:31:23 UTC</tt>.<br> | ||
: The original revision id was <tt> | : The original revision id was <tt>471405512</tt>.<br> | ||
: The revision comment was: <tt></tt><br> | : The revision comment was: <tt></tt><br> | ||
The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br> | The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br> | ||
<h4>Original Wikitext content:</h4> | <h4>Original Wikitext content:</h4> | ||
<div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;white-space: pre-wrap ! important" class="old-revision-html">[[toc|flat]] | <div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;white-space: pre-wrap ! important" class="old-revision-html">[[toc|flat]] | ||
<span style="display: block; text-align: right;">Other languages: [[xenharmonie/53edo|Deutsch]] | |||
</span> | |||
=Theory= | =Theory= | ||
The famous //53 equal division// divides the octave into 53 equal comma-sized parts of 22.642 cents each. It is notable as a [[xenharmonic/5-limit|5-limit]] system, a fact apparently first noted by Isaac Newton, tempering out the schisma, 32805/32768, the kleisma, 15625/15552, the amity comma, 1600000/1594323 and the semicomma, 2109375/2097152. In the 7-limit it tempers out 225/224, 1728/1715 and 3125/3087, the marvel comma, the gariboh, and the orwell comma. In the 11-limit, it tempers out 99/98 and 121/120, and is the [[xenharmonic/optimal patent val|optimal patent val]] for [[xenharmonic/Nuwell family|Big Brother]] temperament, which tempers out both, as well as 11-limit [[xenharmonic/Semicomma family|orwell temperament]], which also tempers out the 11-limit comma 176/175. In the 13-limit, it tempers out 169/168 and 245/243, and gives the optimal patent val for [[xenharmonic/Marvel family|athene temperament]]. It is the eighth [[xenharmonic/The Riemann Zeta Function and Tuning#Zeta%20EDO%20lists|zeta integral edo]] and the 16th [[xenharmonic/prime numbers|prime]] edo, following [[xenharmonic/47edo|47edo]] and coming before [[xenharmonic/59edo|59edo]]. | The famous //53 equal division// divides the octave into 53 equal comma-sized parts of 22.642 cents each. It is notable as a [[xenharmonic/5-limit|5-limit]] system, a fact apparently first noted by Isaac Newton, tempering out the schisma, 32805/32768, the kleisma, 15625/15552, the amity comma, 1600000/1594323 and the semicomma, 2109375/2097152. In the 7-limit it tempers out 225/224, 1728/1715 and 3125/3087, the marvel comma, the gariboh, and the orwell comma. In the 11-limit, it tempers out 99/98 and 121/120, and is the [[xenharmonic/optimal patent val|optimal patent val]] for [[xenharmonic/Nuwell family|Big Brother]] temperament, which tempers out both, as well as 11-limit [[xenharmonic/Semicomma family|orwell temperament]], which also tempers out the 11-limit comma 176/175. In the 13-limit, it tempers out 169/168 and 245/243, and gives the optimal patent val for [[xenharmonic/Marvel family|athene temperament]]. It is the eighth [[xenharmonic/The Riemann Zeta Function and Tuning#Zeta%20EDO%20lists|zeta integral edo]] and the 16th [[xenharmonic/prime numbers|prime]] edo, following [[xenharmonic/47edo|47edo]] and coming before [[xenharmonic/59edo|59edo]]. | ||
Line 99: | Line 101: | ||
<h4>Original HTML content:</h4> | <h4>Original HTML content:</h4> | ||
<div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;width:200%;white-space: pre-wrap ! important" class="old-revision-html"><html><head><title>53edo</title></head><body><!-- ws:start:WikiTextTocRule:10:&lt;img id=&quot;wikitext@@toc@@flat&quot; class=&quot;WikiMedia WikiMediaTocFlat&quot; title=&quot;Table of Contents&quot; src=&quot;/site/embedthumbnail/toc/flat?w=100&amp;h=16&quot;/&gt; --><!-- ws:end:WikiTextTocRule:10 --><!-- ws:start:WikiTextTocRule:11: --><a href="#Theory">Theory</a><!-- ws:end:WikiTextTocRule:11 --><!-- ws:start:WikiTextTocRule:12: --> | <a href="#Linear temperaments">Linear temperaments</a><!-- ws:end:WikiTextTocRule:12 --><!-- ws:start:WikiTextTocRule:13: --> | <a href="#Just Approximation">Just Approximation</a><!-- ws:end:WikiTextTocRule:13 --><!-- ws:start:WikiTextTocRule:14: --> | <a href="#Intervals">Intervals</a><!-- ws:end:WikiTextTocRule:14 --><!-- ws:start:WikiTextTocRule:15: --> | <a href="#Compositions">Compositions</a><!-- ws:end:WikiTextTocRule:15 --><!-- ws:start:WikiTextTocRule:16: --> | <div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;width:200%;white-space: pre-wrap ! important" class="old-revision-html"><html><head><title>53edo</title></head><body><!-- ws:start:WikiTextTocRule:10:&lt;img id=&quot;wikitext@@toc@@flat&quot; class=&quot;WikiMedia WikiMediaTocFlat&quot; title=&quot;Table of Contents&quot; src=&quot;/site/embedthumbnail/toc/flat?w=100&amp;h=16&quot;/&gt; --><!-- ws:end:WikiTextTocRule:10 --><!-- ws:start:WikiTextTocRule:11: --><a href="#Theory">Theory</a><!-- ws:end:WikiTextTocRule:11 --><!-- ws:start:WikiTextTocRule:12: --> | <a href="#Linear temperaments">Linear temperaments</a><!-- ws:end:WikiTextTocRule:12 --><!-- ws:start:WikiTextTocRule:13: --> | <a href="#Just Approximation">Just Approximation</a><!-- ws:end:WikiTextTocRule:13 --><!-- ws:start:WikiTextTocRule:14: --> | <a href="#Intervals">Intervals</a><!-- ws:end:WikiTextTocRule:14 --><!-- ws:start:WikiTextTocRule:15: --> | <a href="#Compositions">Compositions</a><!-- ws:end:WikiTextTocRule:15 --><!-- ws:start:WikiTextTocRule:16: --> | ||
<!-- ws:end:WikiTextTocRule:16 --><!-- ws:start:WikiTextHeadingRule:0:&lt;h1&gt; --><h1 id="toc0"><a name="Theory"></a><!-- ws:end:WikiTextHeadingRule:0 -->Theory</h1> | <!-- ws:end:WikiTextTocRule:16 --><span style="display: block; text-align: right;">Other languages: <a class="wiki_link" href="http://xenharmonie.wikispaces.com/53edo">Deutsch</a><br /> | ||
</span><br /> | |||
<!-- ws:start:WikiTextHeadingRule:0:&lt;h1&gt; --><h1 id="toc0"><a name="Theory"></a><!-- ws:end:WikiTextHeadingRule:0 -->Theory</h1> | |||
The famous <em>53 equal division</em> divides the octave into 53 equal comma-sized parts of 22.642 cents each. It is notable as a <a class="wiki_link" href="http://xenharmonic.wikispaces.com/5-limit">5-limit</a> system, a fact apparently first noted by Isaac Newton, tempering out the schisma, 32805/32768, the kleisma, 15625/15552, the amity comma, 1600000/1594323 and the semicomma, 2109375/2097152. In the 7-limit it tempers out 225/224, 1728/1715 and 3125/3087, the marvel comma, the gariboh, and the orwell comma. In the 11-limit, it tempers out 99/98 and 121/120, and is the <a class="wiki_link" href="http://xenharmonic.wikispaces.com/optimal%20patent%20val">optimal patent val</a> for <a class="wiki_link" href="http://xenharmonic.wikispaces.com/Nuwell%20family">Big Brother</a> temperament, which tempers out both, as well as 11-limit <a class="wiki_link" href="http://xenharmonic.wikispaces.com/Semicomma%20family">orwell temperament</a>, which also tempers out the 11-limit comma 176/175. In the 13-limit, it tempers out 169/168 and 245/243, and gives the optimal patent val for <a class="wiki_link" href="http://xenharmonic.wikispaces.com/Marvel%20family">athene temperament</a>. It is the eighth <a class="wiki_link" href="http://xenharmonic.wikispaces.com/The%20Riemann%20Zeta%20Function%20and%20Tuning#Zeta%20EDO%20lists">zeta integral edo</a> and the 16th <a class="wiki_link" href="http://xenharmonic.wikispaces.com/prime%20numbers">prime</a> edo, following <a class="wiki_link" href="http://xenharmonic.wikispaces.com/47edo">47edo</a> and coming before <a class="wiki_link" href="http://xenharmonic.wikispaces.com/59edo">59edo</a>.<br /> | The famous <em>53 equal division</em> divides the octave into 53 equal comma-sized parts of 22.642 cents each. It is notable as a <a class="wiki_link" href="http://xenharmonic.wikispaces.com/5-limit">5-limit</a> system, a fact apparently first noted by Isaac Newton, tempering out the schisma, 32805/32768, the kleisma, 15625/15552, the amity comma, 1600000/1594323 and the semicomma, 2109375/2097152. In the 7-limit it tempers out 225/224, 1728/1715 and 3125/3087, the marvel comma, the gariboh, and the orwell comma. In the 11-limit, it tempers out 99/98 and 121/120, and is the <a class="wiki_link" href="http://xenharmonic.wikispaces.com/optimal%20patent%20val">optimal patent val</a> for <a class="wiki_link" href="http://xenharmonic.wikispaces.com/Nuwell%20family">Big Brother</a> temperament, which tempers out both, as well as 11-limit <a class="wiki_link" href="http://xenharmonic.wikispaces.com/Semicomma%20family">orwell temperament</a>, which also tempers out the 11-limit comma 176/175. In the 13-limit, it tempers out 169/168 and 245/243, and gives the optimal patent val for <a class="wiki_link" href="http://xenharmonic.wikispaces.com/Marvel%20family">athene temperament</a>. It is the eighth <a class="wiki_link" href="http://xenharmonic.wikispaces.com/The%20Riemann%20Zeta%20Function%20and%20Tuning#Zeta%20EDO%20lists">zeta integral edo</a> and the 16th <a class="wiki_link" href="http://xenharmonic.wikispaces.com/prime%20numbers">prime</a> edo, following <a class="wiki_link" href="http://xenharmonic.wikispaces.com/47edo">47edo</a> and coming before <a class="wiki_link" href="http://xenharmonic.wikispaces.com/59edo">59edo</a>.<br /> | ||
<br /> | <br /> |