53edo: Difference between revisions

Wikispaces>genewardsmith
**Imported revision 448523952 - Original comment: **
Wikispaces>hstraub
**Imported revision 471405512 - Original comment: **
Line 1: Line 1:
<h2>IMPORTED REVISION FROM WIKISPACES</h2>
<h2>IMPORTED REVISION FROM WIKISPACES</h2>
This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br>
This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br>
: This revision was by author [[User:genewardsmith|genewardsmith]] and made on <tt>2013-09-04 11:22:01 UTC</tt>.<br>
: This revision was by author [[User:hstraub|hstraub]] and made on <tt>2013-11-22 10:31:23 UTC</tt>.<br>
: The original revision id was <tt>448523952</tt>.<br>
: The original revision id was <tt>471405512</tt>.<br>
: The revision comment was: <tt></tt><br>
: The revision comment was: <tt></tt><br>
The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br>
The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br>
<h4>Original Wikitext content:</h4>
<h4>Original Wikitext content:</h4>
<div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;white-space: pre-wrap ! important" class="old-revision-html">[[toc|flat]]
<div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;white-space: pre-wrap ! important" class="old-revision-html">[[toc|flat]]
&lt;span style="display: block; text-align: right;"&gt;Other languages: [[xenharmonie/53edo|Deutsch]]
&lt;/span&gt;
=Theory=  
=Theory=  
The famous //53 equal division// divides the octave into 53 equal comma-sized parts of 22.642 cents each. It is notable as a [[xenharmonic/5-limit|5-limit]] system, a fact apparently first noted by Isaac Newton, tempering out the schisma, 32805/32768, the kleisma, 15625/15552, the amity comma, 1600000/1594323 and the semicomma, 2109375/2097152. In the 7-limit it tempers out 225/224, 1728/1715 and 3125/3087, the marvel comma, the gariboh, and the orwell comma. In the 11-limit, it tempers out 99/98 and 121/120, and is the [[xenharmonic/optimal patent val|optimal patent val]] for [[xenharmonic/Nuwell family|Big Brother]] temperament, which tempers out both, as well as 11-limit [[xenharmonic/Semicomma family|orwell temperament]], which also tempers out the 11-limit comma 176/175. In the 13-limit, it tempers out 169/168 and 245/243, and gives the optimal patent val for [[xenharmonic/Marvel family|athene temperament]]. It is the eighth [[xenharmonic/The Riemann Zeta Function and Tuning#Zeta%20EDO%20lists|zeta integral edo]] and the 16th [[xenharmonic/prime numbers|prime]] edo, following [[xenharmonic/47edo|47edo]] and coming before [[xenharmonic/59edo|59edo]].
The famous //53 equal division// divides the octave into 53 equal comma-sized parts of 22.642 cents each. It is notable as a [[xenharmonic/5-limit|5-limit]] system, a fact apparently first noted by Isaac Newton, tempering out the schisma, 32805/32768, the kleisma, 15625/15552, the amity comma, 1600000/1594323 and the semicomma, 2109375/2097152. In the 7-limit it tempers out 225/224, 1728/1715 and 3125/3087, the marvel comma, the gariboh, and the orwell comma. In the 11-limit, it tempers out 99/98 and 121/120, and is the [[xenharmonic/optimal patent val|optimal patent val]] for [[xenharmonic/Nuwell family|Big Brother]] temperament, which tempers out both, as well as 11-limit [[xenharmonic/Semicomma family|orwell temperament]], which also tempers out the 11-limit comma 176/175. In the 13-limit, it tempers out 169/168 and 245/243, and gives the optimal patent val for [[xenharmonic/Marvel family|athene temperament]]. It is the eighth [[xenharmonic/The Riemann Zeta Function and Tuning#Zeta%20EDO%20lists|zeta integral edo]] and the 16th [[xenharmonic/prime numbers|prime]] edo, following [[xenharmonic/47edo|47edo]] and coming before [[xenharmonic/59edo|59edo]].
Line 99: Line 101:
<h4>Original HTML content:</h4>
<h4>Original HTML content:</h4>
<div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;width:200%;white-space: pre-wrap ! important" class="old-revision-html">&lt;html&gt;&lt;head&gt;&lt;title&gt;53edo&lt;/title&gt;&lt;/head&gt;&lt;body&gt;&lt;!-- ws:start:WikiTextTocRule:10:&amp;lt;img id=&amp;quot;wikitext@@toc@@flat&amp;quot; class=&amp;quot;WikiMedia WikiMediaTocFlat&amp;quot; title=&amp;quot;Table of Contents&amp;quot; src=&amp;quot;/site/embedthumbnail/toc/flat?w=100&amp;amp;h=16&amp;quot;/&amp;gt; --&gt;&lt;!-- ws:end:WikiTextTocRule:10 --&gt;&lt;!-- ws:start:WikiTextTocRule:11: --&gt;&lt;a href="#Theory"&gt;Theory&lt;/a&gt;&lt;!-- ws:end:WikiTextTocRule:11 --&gt;&lt;!-- ws:start:WikiTextTocRule:12: --&gt; | &lt;a href="#Linear temperaments"&gt;Linear temperaments&lt;/a&gt;&lt;!-- ws:end:WikiTextTocRule:12 --&gt;&lt;!-- ws:start:WikiTextTocRule:13: --&gt; | &lt;a href="#Just Approximation"&gt;Just Approximation&lt;/a&gt;&lt;!-- ws:end:WikiTextTocRule:13 --&gt;&lt;!-- ws:start:WikiTextTocRule:14: --&gt; | &lt;a href="#Intervals"&gt;Intervals&lt;/a&gt;&lt;!-- ws:end:WikiTextTocRule:14 --&gt;&lt;!-- ws:start:WikiTextTocRule:15: --&gt; | &lt;a href="#Compositions"&gt;Compositions&lt;/a&gt;&lt;!-- ws:end:WikiTextTocRule:15 --&gt;&lt;!-- ws:start:WikiTextTocRule:16: --&gt;
<div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;width:200%;white-space: pre-wrap ! important" class="old-revision-html">&lt;html&gt;&lt;head&gt;&lt;title&gt;53edo&lt;/title&gt;&lt;/head&gt;&lt;body&gt;&lt;!-- ws:start:WikiTextTocRule:10:&amp;lt;img id=&amp;quot;wikitext@@toc@@flat&amp;quot; class=&amp;quot;WikiMedia WikiMediaTocFlat&amp;quot; title=&amp;quot;Table of Contents&amp;quot; src=&amp;quot;/site/embedthumbnail/toc/flat?w=100&amp;amp;h=16&amp;quot;/&amp;gt; --&gt;&lt;!-- ws:end:WikiTextTocRule:10 --&gt;&lt;!-- ws:start:WikiTextTocRule:11: --&gt;&lt;a href="#Theory"&gt;Theory&lt;/a&gt;&lt;!-- ws:end:WikiTextTocRule:11 --&gt;&lt;!-- ws:start:WikiTextTocRule:12: --&gt; | &lt;a href="#Linear temperaments"&gt;Linear temperaments&lt;/a&gt;&lt;!-- ws:end:WikiTextTocRule:12 --&gt;&lt;!-- ws:start:WikiTextTocRule:13: --&gt; | &lt;a href="#Just Approximation"&gt;Just Approximation&lt;/a&gt;&lt;!-- ws:end:WikiTextTocRule:13 --&gt;&lt;!-- ws:start:WikiTextTocRule:14: --&gt; | &lt;a href="#Intervals"&gt;Intervals&lt;/a&gt;&lt;!-- ws:end:WikiTextTocRule:14 --&gt;&lt;!-- ws:start:WikiTextTocRule:15: --&gt; | &lt;a href="#Compositions"&gt;Compositions&lt;/a&gt;&lt;!-- ws:end:WikiTextTocRule:15 --&gt;&lt;!-- ws:start:WikiTextTocRule:16: --&gt;
&lt;!-- ws:end:WikiTextTocRule:16 --&gt;&lt;!-- ws:start:WikiTextHeadingRule:0:&amp;lt;h1&amp;gt; --&gt;&lt;h1 id="toc0"&gt;&lt;a name="Theory"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:0 --&gt;Theory&lt;/h1&gt;
&lt;!-- ws:end:WikiTextTocRule:16 --&gt;&lt;span style="display: block; text-align: right;"&gt;Other languages: &lt;a class="wiki_link" href="http://xenharmonie.wikispaces.com/53edo"&gt;Deutsch&lt;/a&gt;&lt;br /&gt;
&lt;/span&gt;&lt;br /&gt;
&lt;!-- ws:start:WikiTextHeadingRule:0:&amp;lt;h1&amp;gt; --&gt;&lt;h1 id="toc0"&gt;&lt;a name="Theory"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:0 --&gt;Theory&lt;/h1&gt;
  The famous &lt;em&gt;53 equal division&lt;/em&gt; divides the octave into 53 equal comma-sized parts of 22.642 cents each. It is notable as a &lt;a class="wiki_link" href="http://xenharmonic.wikispaces.com/5-limit"&gt;5-limit&lt;/a&gt; system, a fact apparently first noted by Isaac Newton, tempering out the schisma, 32805/32768, the kleisma, 15625/15552, the amity comma, 1600000/1594323 and the semicomma, 2109375/2097152. In the 7-limit it tempers out 225/224, 1728/1715 and 3125/3087, the marvel comma, the gariboh, and the orwell comma. In the 11-limit, it tempers out 99/98 and 121/120, and is the &lt;a class="wiki_link" href="http://xenharmonic.wikispaces.com/optimal%20patent%20val"&gt;optimal patent val&lt;/a&gt; for &lt;a class="wiki_link" href="http://xenharmonic.wikispaces.com/Nuwell%20family"&gt;Big Brother&lt;/a&gt; temperament, which tempers out both, as well as 11-limit &lt;a class="wiki_link" href="http://xenharmonic.wikispaces.com/Semicomma%20family"&gt;orwell temperament&lt;/a&gt;, which also tempers out the 11-limit comma 176/175. In the 13-limit, it tempers out 169/168 and 245/243, and gives the optimal patent val for &lt;a class="wiki_link" href="http://xenharmonic.wikispaces.com/Marvel%20family"&gt;athene temperament&lt;/a&gt;. It is the eighth &lt;a class="wiki_link" href="http://xenharmonic.wikispaces.com/The%20Riemann%20Zeta%20Function%20and%20Tuning#Zeta%20EDO%20lists"&gt;zeta integral edo&lt;/a&gt; and the 16th &lt;a class="wiki_link" href="http://xenharmonic.wikispaces.com/prime%20numbers"&gt;prime&lt;/a&gt; edo, following &lt;a class="wiki_link" href="http://xenharmonic.wikispaces.com/47edo"&gt;47edo&lt;/a&gt; and coming before &lt;a class="wiki_link" href="http://xenharmonic.wikispaces.com/59edo"&gt;59edo&lt;/a&gt;.&lt;br /&gt;
  The famous &lt;em&gt;53 equal division&lt;/em&gt; divides the octave into 53 equal comma-sized parts of 22.642 cents each. It is notable as a &lt;a class="wiki_link" href="http://xenharmonic.wikispaces.com/5-limit"&gt;5-limit&lt;/a&gt; system, a fact apparently first noted by Isaac Newton, tempering out the schisma, 32805/32768, the kleisma, 15625/15552, the amity comma, 1600000/1594323 and the semicomma, 2109375/2097152. In the 7-limit it tempers out 225/224, 1728/1715 and 3125/3087, the marvel comma, the gariboh, and the orwell comma. In the 11-limit, it tempers out 99/98 and 121/120, and is the &lt;a class="wiki_link" href="http://xenharmonic.wikispaces.com/optimal%20patent%20val"&gt;optimal patent val&lt;/a&gt; for &lt;a class="wiki_link" href="http://xenharmonic.wikispaces.com/Nuwell%20family"&gt;Big Brother&lt;/a&gt; temperament, which tempers out both, as well as 11-limit &lt;a class="wiki_link" href="http://xenharmonic.wikispaces.com/Semicomma%20family"&gt;orwell temperament&lt;/a&gt;, which also tempers out the 11-limit comma 176/175. In the 13-limit, it tempers out 169/168 and 245/243, and gives the optimal patent val for &lt;a class="wiki_link" href="http://xenharmonic.wikispaces.com/Marvel%20family"&gt;athene temperament&lt;/a&gt;. It is the eighth &lt;a class="wiki_link" href="http://xenharmonic.wikispaces.com/The%20Riemann%20Zeta%20Function%20and%20Tuning#Zeta%20EDO%20lists"&gt;zeta integral edo&lt;/a&gt; and the 16th &lt;a class="wiki_link" href="http://xenharmonic.wikispaces.com/prime%20numbers"&gt;prime&lt;/a&gt; edo, following &lt;a class="wiki_link" href="http://xenharmonic.wikispaces.com/47edo"&gt;47edo&lt;/a&gt; and coming before &lt;a class="wiki_link" href="http://xenharmonic.wikispaces.com/59edo"&gt;59edo&lt;/a&gt;.&lt;br /&gt;
&lt;br /&gt;
&lt;br /&gt;