61edo: Difference between revisions

Wikispaces>genewardsmith
**Imported revision 339897230 - Original comment: **
Wikispaces>FREEZE
No edit summary
Line 1: Line 1:
<h2>IMPORTED REVISION FROM WIKISPACES</h2>
=<span style="color: #ffa610; font-family: 'Times New Roman',Times,serif; font-size: 122%;">'''61 tone equal temperament'''</span>=
This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br>
''61-EDO'' refers to the equal division of [[2/1|2/1]] ratio into 61 equal parts, of 19.6721 [[cent|cent]]s each. It is the 18th [[prime_numbers|prime]] EDO, after of [[59edo|59edo]] and before of [[67edo|67edo]]. It provides the optimal patent val for the 24&amp;37 temperament in the 7-, 11- and 13-limit.
: This revision was by author [[User:genewardsmith|genewardsmith]] and made on <tt>2012-05-27 16:30:03 UTC</tt>.<br>
: The original revision id was <tt>339897230</tt>.<br>
: The revision comment was: <tt></tt><br>
The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br>
<h4>Original Wikitext content:</h4>
<div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;white-space: pre-wrap ! important" class="old-revision-html">=&lt;span style="color: #ffa610; font-family: 'Times New Roman',Times,serif; font-size: 122%;"&gt;**61 tone equal temperament**&lt;/span&gt;=  
//61-EDO// refers to the equal division of [[xenharmonic/2_1|2/1]] ratio into 61 equal parts, of 19.6721 [[xenharmonic/cent|cent]]s each. It is the 18th [[prime numbers|prime]] EDO, after of [[59edo]] and before of [[67edo]]. It provides the optimal patent val for the 24&amp;37 temperament in the 7-, 11- and 13-limit.


=Poem=  
=Poem=
These 61 equal divisions of the octave,
These 61 equal divisions of the octave,
though rare are assuredly a ROCK-tave (har har),
though rare are assuredly a ROCK-tave (har har),
while the 3rd and 5th harmonics are about six cents sharp,
while the 3rd and 5th harmonics are about six cents sharp,
(and the flattish 15th poised differently on the harp),
(and the flattish 15th poised differently on the harp),
the 7th and 11th err by less, around three,
the 7th and 11th err by less, around three,
and thus mayhap, a good orgone tuning found to be;
and thus mayhap, a good orgone tuning found to be;
slightly sharp as well, is the 13th harmonic's place,
slightly sharp as well, is the 13th harmonic's place,
but the 9th and 17th lack near so much grace,
but the 9th and 17th lack near so much grace,
interestingly the 19th is good but a couple cents flat,
interestingly the 19th is good but a couple cents flat,
and the 21st and 23rd are but a cent or two sharp!
and the 21st and 23rd are but a cent or two sharp!


==**61-EDO Intervals**==
=='''61-EDO Intervals'''==
|| **Degrees** || **Cent Value** ||
|| 0 || 0 ||
|| 1 || 19.6721 ||
|| 2 || 39.3443 ||
|| 3 || 59.0164 ||
|| 4 || 78.6885 ||
|| 5 || 98.3607 ||
|| 6 || 118.0328 ||
|| 7 || 137.7049 ||
|| 8 || 157.377 ||
|| 9 || 177.0492 ||
|| 10 || 196.7213 ||
|| 11 || 216.3934 ||
|| 12 || 236.0656 ||
|| 13 || 255.7377 ||
|| 14 || 275.4098 ||
|| 15 || 295.082 ||
|| 16 || 314.7541 ||
|| 17 || 334.4262 ||
|| 18 || 354.0984 ||
|| 19 || 373.7705 ||
|| 20 || 393.4426 ||
|| 21 || 413.1148 ||
|| 22 || 432.7869 ||
|| 23 || 452.459 ||
|| 24 || 472.1311 ||
|| 25 || 491.8033 ||
|| 26 || 511.4754 ||
|| 27 || 531.1475 ||
|| 28 || 550.8197 ||
|| 29 || 570.4918 ||
|| 30 || 590.1639 ||
|| 31 || 609.8361 ||
|| 32 || 629.5082 ||
|| 33 || 649.1803 ||
|| 34 || 668.8525 ||
|| 35 || 688.5246 ||
|| 36 || 708.1967 ||
|| 37 || 727.8689 ||
|| 38 || 747.541 ||
|| 39 || 767.2131 ||
|| 40 || 786.8852 ||
|| 41 || 806.5574 ||
|| 42 || 826.2295 ||
|| 43 || 845.9016 ||
|| 44 || 865.5738 ||
|| 45 || 885.2459 ||
|| 46 || 904.918 ||
|| 47 || 924.5902 ||
|| 48 || 944.2623 ||
|| 49 || 963.9344 ||
|| 50 || 983.6066 ||
|| 51 || 1003.2787 ||
|| 52 || 1022.9508 ||
|| 53 || 1042.623 ||
|| 54 || 1062.2951 ||
|| 55 || 1081.9672 ||
|| 56 || 1101.6393 ||
|| 57 || 1121.3115 ||
|| 58 || 1140.9836 ||
|| 59 || 1160.6557 ||
|| 60 || 1180.3279 ||</pre></div>
<h4>Original HTML content:</h4>
<div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;width:200%;white-space: pre-wrap ! important" class="old-revision-html">&lt;html&gt;&lt;head&gt;&lt;title&gt;61edo&lt;/title&gt;&lt;/head&gt;&lt;body&gt;&lt;!-- ws:start:WikiTextHeadingRule:0:&amp;lt;h1&amp;gt; --&gt;&lt;h1 id="toc0"&gt;&lt;a name="x61 tone equal temperament"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:0 --&gt;&lt;span style="color: #ffa610; font-family: 'Times New Roman',Times,serif; font-size: 122%;"&gt;&lt;strong&gt;61 tone equal temperament&lt;/strong&gt;&lt;/span&gt;&lt;/h1&gt;
&lt;em&gt;61-EDO&lt;/em&gt; refers to the equal division of &lt;a class="wiki_link" href="http://xenharmonic.wikispaces.com/2_1"&gt;2/1&lt;/a&gt; ratio into 61 equal parts, of 19.6721 &lt;a class="wiki_link" href="http://xenharmonic.wikispaces.com/cent"&gt;cent&lt;/a&gt;s each. It is the 18th &lt;a class="wiki_link" href="/prime%20numbers"&gt;prime&lt;/a&gt; EDO, after of &lt;a class="wiki_link" href="/59edo"&gt;59edo&lt;/a&gt; and before of &lt;a class="wiki_link" href="/67edo"&gt;67edo&lt;/a&gt;. It provides the optimal patent val for the 24&amp;amp;37 temperament in the 7-, 11- and 13-limit.&lt;br /&gt;
&lt;br /&gt;
&lt;!-- ws:start:WikiTextHeadingRule:2:&amp;lt;h1&amp;gt; --&gt;&lt;h1 id="toc1"&gt;&lt;a name="Poem"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:2 --&gt;Poem&lt;/h1&gt;
These 61 equal divisions of the octave,&lt;br /&gt;
though rare are assuredly a ROCK-tave (har har),&lt;br /&gt;
while the 3rd and 5th harmonics are about six cents sharp,&lt;br /&gt;
(and the flattish 15th poised differently on the harp),&lt;br /&gt;
the 7th and 11th err by less, around three,&lt;br /&gt;
and thus mayhap, a good orgone tuning found to be;&lt;br /&gt;
slightly sharp as well, is the 13th harmonic's place,&lt;br /&gt;
but the 9th and 17th lack near so much grace,&lt;br /&gt;
interestingly the 19th is good but a couple cents flat,&lt;br /&gt;
and the 21st and 23rd are but a cent or two sharp!&lt;br /&gt;
&lt;br /&gt;
&lt;!-- ws:start:WikiTextHeadingRule:4:&amp;lt;h2&amp;gt; --&gt;&lt;h2 id="toc2"&gt;&lt;a name="Poem-61-EDO Intervals"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:4 --&gt;&lt;strong&gt;61-EDO Intervals&lt;/strong&gt;&lt;/h2&gt;
 
&lt;table class="wiki_table"&gt;
    &lt;tr&gt;
        &lt;td&gt;&lt;strong&gt;Degrees&lt;/strong&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;strong&gt;Cent Value&lt;/strong&gt;&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;0&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;0&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;1&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;19.6721&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;2&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;39.3443&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;3&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;59.0164&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;4&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;78.6885&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;5&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;98.3607&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;6&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;118.0328&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;7&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;137.7049&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;8&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;157.377&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;9&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;177.0492&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;10&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;196.7213&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;11&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;216.3934&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;12&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;236.0656&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;13&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;255.7377&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;14&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;275.4098&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;15&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;295.082&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;16&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;314.7541&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;17&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;334.4262&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;18&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;354.0984&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;19&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;373.7705&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;20&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;393.4426&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;21&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;413.1148&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;22&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;432.7869&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;23&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;452.459&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;24&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;472.1311&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;25&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;491.8033&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;26&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;511.4754&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;27&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;531.1475&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;28&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;550.8197&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;29&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;570.4918&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;30&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;590.1639&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;31&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;609.8361&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;32&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;629.5082&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;33&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;649.1803&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;34&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;668.8525&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;35&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;688.5246&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;36&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;708.1967&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;37&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;727.8689&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;38&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;747.541&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;39&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;767.2131&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;40&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;786.8852&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;41&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;806.5574&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;42&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;826.2295&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;43&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;845.9016&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;44&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;865.5738&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;45&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;885.2459&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;46&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;904.918&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;47&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;924.5902&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;48&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;944.2623&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;49&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;963.9344&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;50&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;983.6066&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;51&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1003.2787&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;52&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1022.9508&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;53&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1042.623&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;54&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1062.2951&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;55&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1081.9672&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;56&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1101.6393&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;57&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1121.3115&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;58&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1140.9836&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;59&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1160.6557&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;60&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1180.3279&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
&lt;/table&gt;


&lt;/body&gt;&lt;/html&gt;</pre></div>
{| class="wikitable"
|-
| | '''Degrees'''
| | '''Cent Value'''
|-
| | 0
| | 0
|-
| | 1
| | 19.6721
|-
| | 2
| | 39.3443
|-
| | 3
| | 59.0164
|-
| | 4
| | 78.6885
|-
| | 5
| | 98.3607
|-
| | 6
| | 118.0328
|-
| | 7
| | 137.7049
|-
| | 8
| | 157.377
|-
| | 9
| | 177.0492
|-
| | 10
| | 196.7213
|-
| | 11
| | 216.3934
|-
| | 12
| | 236.0656
|-
| | 13
| | 255.7377
|-
| | 14
| | 275.4098
|-
| | 15
| | 295.082
|-
| | 16
| | 314.7541
|-
| | 17
| | 334.4262
|-
| | 18
| | 354.0984
|-
| | 19
| | 373.7705
|-
| | 20
| | 393.4426
|-
| | 21
| | 413.1148
|-
| | 22
| | 432.7869
|-
| | 23
| | 452.459
|-
| | 24
| | 472.1311
|-
| | 25
| | 491.8033
|-
| | 26
| | 511.4754
|-
| | 27
| | 531.1475
|-
| | 28
| | 550.8197
|-
| | 29
| | 570.4918
|-
| | 30
| | 590.1639
|-
| | 31
| | 609.8361
|-
| | 32
| | 629.5082
|-
| | 33
| | 649.1803
|-
| | 34
| | 668.8525
|-
| | 35
| | 688.5246
|-
| | 36
| | 708.1967
|-
| | 37
| | 727.8689
|-
| | 38
| | 747.541
|-
| | 39
| | 767.2131
|-
| | 40
| | 786.8852
|-
| | 41
| | 806.5574
|-
| | 42
| | 826.2295
|-
| | 43
| | 845.9016
|-
| | 44
| | 865.5738
|-
| | 45
| | 885.2459
|-
| | 46
| | 904.918
|-
| | 47
| | 924.5902
|-
| | 48
| | 944.2623
|-
| | 49
| | 963.9344
|-
| | 50
| | 983.6066
|-
| | 51
| | 1003.2787
|-
| | 52
| | 1022.9508
|-
| | 53
| | 1042.623
|-
| | 54
| | 1062.2951
|-
| | 55
| | 1081.9672
|-
| | 56
| | 1101.6393
|-
| | 57
| | 1121.3115
|-
| | 58
| | 1140.9836
|-
| | 59
| | 1160.6557
|-
| | 60
| | 1180.3279
|}