365edo: Difference between revisions

Eliora (talk | contribs)
Created page with "The '''365 equal divisions of the octave''' ('''365edo'''), or the '''365(-tone) equal temperament''' ('''365tet''', '''365et''') when viewed from a regular temperament pe..."
 
Eliora (talk | contribs)
No edit summary
Line 8: Line 8:


An octave stretch of -0.796 cents would compress 365edo to an interesting intepretation: the pure 2/1 would represent 365.24219edo, which is the length of solar days in a tropical year. In 23-limit, 365eeffgghiii val's octave stretch of -0.79428 cents is very close, and makes 2/1 correspond to 365.241917 days, or 365 days 5h 48m 21.7s, which is only about 20 seconds short of the tropical year in the present era. Such a temperament eliminates 300/299, 875/874, 1729/1725, 3060/3059, 4235/4232.
An octave stretch of -0.796 cents would compress 365edo to an interesting intepretation: the pure 2/1 would represent 365.24219edo, which is the length of solar days in a tropical year. In 23-limit, 365eeffgghiii val's octave stretch of -0.79428 cents is very close, and makes 2/1 correspond to 365.241917 days, or 365 days 5h 48m 21.7s, which is only about 20 seconds short of the tropical year in the present era. Such a temperament eliminates 300/299, 875/874, 1729/1725, 3060/3059, 4235/4232.
== Approaches ==
* [[365edo/Eliora's approach|Eliora's approach]]