441edo: Difference between revisions

Wikispaces>xenwolf
**Imported revision 239377849 - Original comment: **
Wikispaces>genewardsmith
**Imported revision 244517671 - Original comment: **
Line 1: Line 1:
<h2>IMPORTED REVISION FROM WIKISPACES</h2>
<h2>IMPORTED REVISION FROM WIKISPACES</h2>
This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br>
This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br>
: This revision was by author [[User:xenwolf|xenwolf]] and made on <tt>2011-06-29 15:45:06 UTC</tt>.<br>
: This revision was by author [[User:genewardsmith|genewardsmith]] and made on <tt>2011-08-05 14:15:53 UTC</tt>.<br>
: The original revision id was <tt>239377849</tt>.<br>
: The original revision id was <tt>244517671</tt>.<br>
: The revision comment was: <tt></tt><br>
: The revision comment was: <tt></tt><br>
The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br>
The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br>
<h4>Original Wikitext content:</h4>
<h4>Original Wikitext content:</h4>
<div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;white-space: pre-wrap ! important" class="old-revision-html">**441edo** is the [[equal division of the octave]] into 441 parts of 2.721 [[cent]]s each. It is a very strong [[7-limit]] system; strong enough to qualify as a [[The Riemann Zeta Function and Tuning#Zeta EDO lists|zeta peak edo]]. In the [[5-limit]] It [[tempering out|tempers out]] the hemithirds [[comma]], |38 -2 -15&gt;, the ennealimma, |1 -27 18&gt;, whoosh, |37 25 -33&gt;, and egads, |-36 -52 51&gt;. In the 7-limit it tempers out 2401/2400, 4375/4374, 420175/419904 and 250047/250000, so that it supports [[Ragismic microtemperaments#Ennealimmal|ennealimmal temperament]]. In the [[11-limit]] it tempers out 4000/3993, and in the 13-limit, 1575/1573, 2080/2079 and 4225/4224. It provides the [[optimal patent val]] for 11- and [[13-limit]] [[Ragismic microtemperaments#Ennealimmal|semiennealimmal temperament]].
<div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;white-space: pre-wrap ! important" class="old-revision-html">**441edo** is the [[equal division of the octave]] into 441 parts of 2.721 [[cent]]s each. It is a very strong [[7-limit]] system; strong enough to qualify as a [[The Riemann Zeta Function and Tuning#Zeta EDO lists|zeta peak edo]]. In the [[5-limit]] It [[tempering out|tempers out]] the hemithirds [[comma]], |38 -2 -15&gt;, the ennealimma, |1 -27 18&gt;, whoosh, |37 25 -33&gt;, and egads, |-36 -52 51&gt;. In the 7-limit it tempers out 2401/2400, 4375/4374, 420175/419904 and 250047/250000, so that it supports [[Ragismic microtemperaments#Ennealimmal|ennealimmal temperament]]. In the [[11-limit]] it tempers out 4000/3993, and in the 13-limit, 1575/1573, 2080/2079 and 4225/4224. It provides the [[optimal patent val]] for 11- and [[13-limit]] [[Ragismic microtemperaments#Ennealimmal|semiennealimmal temperament]], and since it tempers out 1575/1573, the nicola, it allows the [[nicolic tetrad]].


411 is factored into primes as follows: 441 = [[3edo|3]]&lt;span style="vertical-align: super;"&gt;2&lt;/span&gt; · [[7edo|7]]&lt;span style="vertical-align: super;"&gt;2&lt;/span&gt;, and has this further divisors: [[9edo|9]], [[21edo|21]], [[49edo|49]].</pre></div>
411 is factored into primes as follows: 441 = [[3edo|3]]&lt;span style="vertical-align: super;"&gt;2&lt;/span&gt; · [[7edo|7]]&lt;span style="vertical-align: super;"&gt;2&lt;/span&gt;, and has this further divisors: [[9edo|9]], [[21edo|21]], [[49edo|49]].</pre></div>
<h4>Original HTML content:</h4>
<h4>Original HTML content:</h4>
<div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;width:200%;white-space: pre-wrap ! important" class="old-revision-html">&lt;html&gt;&lt;head&gt;&lt;title&gt;441edo&lt;/title&gt;&lt;/head&gt;&lt;body&gt;&lt;strong&gt;441edo&lt;/strong&gt; is the &lt;a class="wiki_link" href="/equal%20division%20of%20the%20octave"&gt;equal division of the octave&lt;/a&gt; into 441 parts of 2.721 &lt;a class="wiki_link" href="/cent"&gt;cent&lt;/a&gt;s each. It is a very strong &lt;a class="wiki_link" href="/7-limit"&gt;7-limit&lt;/a&gt; system; strong enough to qualify as a &lt;a class="wiki_link" href="/The%20Riemann%20Zeta%20Function%20and%20Tuning#Zeta EDO lists"&gt;zeta peak edo&lt;/a&gt;. In the &lt;a class="wiki_link" href="/5-limit"&gt;5-limit&lt;/a&gt; It &lt;a class="wiki_link" href="/tempering%20out"&gt;tempers out&lt;/a&gt; the hemithirds &lt;a class="wiki_link" href="/comma"&gt;comma&lt;/a&gt;, |38 -2 -15&amp;gt;, the ennealimma, |1 -27 18&amp;gt;, whoosh, |37 25 -33&amp;gt;, and egads, |-36 -52 51&amp;gt;. In the 7-limit it tempers out 2401/2400, 4375/4374, 420175/419904 and 250047/250000, so that it supports &lt;a class="wiki_link" href="/Ragismic%20microtemperaments#Ennealimmal"&gt;ennealimmal temperament&lt;/a&gt;. In the &lt;a class="wiki_link" href="/11-limit"&gt;11-limit&lt;/a&gt; it tempers out 4000/3993, and in the 13-limit, 1575/1573, 2080/2079 and 4225/4224. It provides the &lt;a class="wiki_link" href="/optimal%20patent%20val"&gt;optimal patent val&lt;/a&gt; for 11- and &lt;a class="wiki_link" href="/13-limit"&gt;13-limit&lt;/a&gt; &lt;a class="wiki_link" href="/Ragismic%20microtemperaments#Ennealimmal"&gt;semiennealimmal temperament&lt;/a&gt;.&lt;br /&gt;
<div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;width:200%;white-space: pre-wrap ! important" class="old-revision-html">&lt;html&gt;&lt;head&gt;&lt;title&gt;441edo&lt;/title&gt;&lt;/head&gt;&lt;body&gt;&lt;strong&gt;441edo&lt;/strong&gt; is the &lt;a class="wiki_link" href="/equal%20division%20of%20the%20octave"&gt;equal division of the octave&lt;/a&gt; into 441 parts of 2.721 &lt;a class="wiki_link" href="/cent"&gt;cent&lt;/a&gt;s each. It is a very strong &lt;a class="wiki_link" href="/7-limit"&gt;7-limit&lt;/a&gt; system; strong enough to qualify as a &lt;a class="wiki_link" href="/The%20Riemann%20Zeta%20Function%20and%20Tuning#Zeta EDO lists"&gt;zeta peak edo&lt;/a&gt;. In the &lt;a class="wiki_link" href="/5-limit"&gt;5-limit&lt;/a&gt; It &lt;a class="wiki_link" href="/tempering%20out"&gt;tempers out&lt;/a&gt; the hemithirds &lt;a class="wiki_link" href="/comma"&gt;comma&lt;/a&gt;, |38 -2 -15&amp;gt;, the ennealimma, |1 -27 18&amp;gt;, whoosh, |37 25 -33&amp;gt;, and egads, |-36 -52 51&amp;gt;. In the 7-limit it tempers out 2401/2400, 4375/4374, 420175/419904 and 250047/250000, so that it supports &lt;a class="wiki_link" href="/Ragismic%20microtemperaments#Ennealimmal"&gt;ennealimmal temperament&lt;/a&gt;. In the &lt;a class="wiki_link" href="/11-limit"&gt;11-limit&lt;/a&gt; it tempers out 4000/3993, and in the 13-limit, 1575/1573, 2080/2079 and 4225/4224. It provides the &lt;a class="wiki_link" href="/optimal%20patent%20val"&gt;optimal patent val&lt;/a&gt; for 11- and &lt;a class="wiki_link" href="/13-limit"&gt;13-limit&lt;/a&gt; &lt;a class="wiki_link" href="/Ragismic%20microtemperaments#Ennealimmal"&gt;semiennealimmal temperament&lt;/a&gt;, and since it tempers out 1575/1573, the nicola, it allows the &lt;a class="wiki_link" href="/nicolic%20tetrad"&gt;nicolic tetrad&lt;/a&gt;.&lt;br /&gt;
&lt;br /&gt;
&lt;br /&gt;
411 is factored into primes as follows: 441 = &lt;a class="wiki_link" href="/3edo"&gt;3&lt;/a&gt;&lt;span style="vertical-align: super;"&gt;2&lt;/span&gt; · &lt;a class="wiki_link" href="/7edo"&gt;7&lt;/a&gt;&lt;span style="vertical-align: super;"&gt;2&lt;/span&gt;, and has this further divisors: &lt;a class="wiki_link" href="/9edo"&gt;9&lt;/a&gt;, &lt;a class="wiki_link" href="/21edo"&gt;21&lt;/a&gt;, &lt;a class="wiki_link" href="/49edo"&gt;49&lt;/a&gt;.&lt;/body&gt;&lt;/html&gt;</pre></div>
411 is factored into primes as follows: 441 = &lt;a class="wiki_link" href="/3edo"&gt;3&lt;/a&gt;&lt;span style="vertical-align: super;"&gt;2&lt;/span&gt; · &lt;a class="wiki_link" href="/7edo"&gt;7&lt;/a&gt;&lt;span style="vertical-align: super;"&gt;2&lt;/span&gt;, and has this further divisors: &lt;a class="wiki_link" href="/9edo"&gt;9&lt;/a&gt;, &lt;a class="wiki_link" href="/21edo"&gt;21&lt;/a&gt;, &lt;a class="wiki_link" href="/49edo"&gt;49&lt;/a&gt;.&lt;/body&gt;&lt;/html&gt;</pre></div>