39edt: Difference between revisions

Wikispaces>genewardsmith
**Imported revision 250633006 - Original comment: **
 
Wikispaces>genewardsmith
**Imported revision 250633114 - Original comment: **
Line 1: Line 1:
<h2>IMPORTED REVISION FROM WIKISPACES</h2>
<h2>IMPORTED REVISION FROM WIKISPACES</h2>
This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br>
This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br>
: This revision was by author [[User:genewardsmith|genewardsmith]] and made on <tt>2011-09-04 13:41:40 UTC</tt>.<br>
: This revision was by author [[User:genewardsmith|genewardsmith]] and made on <tt>2011-09-04 13:42:50 UTC</tt>.<br>
: The original revision id was <tt>250633006</tt>.<br>
: The original revision id was <tt>250633114</tt>.<br>
: The revision comment was: <tt></tt><br>
: The revision comment was: <tt></tt><br>
The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br>
The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br>
<h4>Original Wikitext content:</h4>
<h4>Original Wikitext content:</h4>
<div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;white-space: pre-wrap ! important" class="old-revision-html">The 39 equal division of 3, the tritave, divides it into 39 equal parts of 48.678 cents each. It is a strong no-twos 13-limit system, a fact first noted by [[Paul Erlich]], and like [[26edt]] and [[52edt]] it is a multiple of [[13edt]] and so contains the [[Bohlen-Pierce scale]]. It is contorted in the 7-limit, tempering out the same BP commas 245/243 and 3125/3087 as 13edt. In the 11-limit it tempers out  1331/1323 and in the 13-limit 275/273, 847/845 and 1575/1573. It is related to the 49f&amp;172f temperament tempering out 245/243, 275/273, 847/845 and 1575/1573, which has map [&lt;1 0 0 0 0 0|, &lt;0 39 57 69 85 91|]. This has a POTE generator which is an approximate 77/75 of 48.822 cents. 39edt is the ninth [[The Riemann Zeta Function and Tuning#Removing primes|no-twos zeta peak edt]].  
<div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;white-space: pre-wrap ! important" class="old-revision-html">The 39 equal division of 3, the tritave, divides it into 39 equal parts of 48.678 cents each. It is a strong no-twos 13-limit system, a fact first noted by [[Paul Erlich]], and like [[26edt]] and [[52edt]] it is a multiple of [[13edt]] and so contains the [[Bohlen-Pierce]] scale. It is contorted in the 7-limit, tempering out the same BP commas 245/243 and 3125/3087 as 13edt. In the 11-limit it tempers out  1331/1323 and in the 13-limit 275/273, 847/845 and 1575/1573. It is related to the 49f&amp;172f temperament tempering out 245/243, 275/273, 847/845 and 1575/1573, which has map [&lt;1 0 0 0 0 0|, &lt;0 39 57 69 85 91|]. This has a POTE generator which is an approximate 77/75 of 48.822 cents. 39edt is the ninth [[The Riemann Zeta Function and Tuning#Removing primes|no-twos zeta peak edt]].  
</pre></div>
</pre></div>
<h4>Original HTML content:</h4>
<h4>Original HTML content:</h4>
<div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;width:200%;white-space: pre-wrap ! important" class="old-revision-html">&lt;html&gt;&lt;head&gt;&lt;title&gt;39edt&lt;/title&gt;&lt;/head&gt;&lt;body&gt;The 39 equal division of 3, the tritave, divides it into 39 equal parts of 48.678 cents each. It is a strong no-twos 13-limit system, a fact first noted by &lt;a class="wiki_link" href="/Paul%20Erlich"&gt;Paul Erlich&lt;/a&gt;, and like &lt;a class="wiki_link" href="/26edt"&gt;26edt&lt;/a&gt; and &lt;a class="wiki_link" href="/52edt"&gt;52edt&lt;/a&gt; it is a multiple of &lt;a class="wiki_link" href="/13edt"&gt;13edt&lt;/a&gt; and so contains the &lt;a class="wiki_link" href="/Bohlen-Pierce%20scale"&gt;Bohlen-Pierce scale&lt;/a&gt;. It is contorted in the 7-limit, tempering out the same BP commas 245/243 and 3125/3087 as 13edt. In the 11-limit it tempers out  1331/1323 and in the 13-limit 275/273, 847/845 and 1575/1573. It is related to the 49f&amp;amp;172f temperament tempering out 245/243, 275/273, 847/845 and 1575/1573, which has map [&amp;lt;1 0 0 0 0 0|, &amp;lt;0 39 57 69 85 91|]. This has a POTE generator which is an approximate 77/75 of 48.822 cents. 39edt is the ninth &lt;a class="wiki_link" href="/The%20Riemann%20Zeta%20Function%20and%20Tuning#Removing primes"&gt;no-twos zeta peak edt&lt;/a&gt;.&lt;/body&gt;&lt;/html&gt;</pre></div>
<div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;width:200%;white-space: pre-wrap ! important" class="old-revision-html">&lt;html&gt;&lt;head&gt;&lt;title&gt;39edt&lt;/title&gt;&lt;/head&gt;&lt;body&gt;The 39 equal division of 3, the tritave, divides it into 39 equal parts of 48.678 cents each. It is a strong no-twos 13-limit system, a fact first noted by &lt;a class="wiki_link" href="/Paul%20Erlich"&gt;Paul Erlich&lt;/a&gt;, and like &lt;a class="wiki_link" href="/26edt"&gt;26edt&lt;/a&gt; and &lt;a class="wiki_link" href="/52edt"&gt;52edt&lt;/a&gt; it is a multiple of &lt;a class="wiki_link" href="/13edt"&gt;13edt&lt;/a&gt; and so contains the &lt;a class="wiki_link" href="/Bohlen-Pierce"&gt;Bohlen-Pierce&lt;/a&gt; scale. It is contorted in the 7-limit, tempering out the same BP commas 245/243 and 3125/3087 as 13edt. In the 11-limit it tempers out  1331/1323 and in the 13-limit 275/273, 847/845 and 1575/1573. It is related to the 49f&amp;amp;172f temperament tempering out 245/243, 275/273, 847/845 and 1575/1573, which has map [&amp;lt;1 0 0 0 0 0|, &amp;lt;0 39 57 69 85 91|]. This has a POTE generator which is an approximate 77/75 of 48.822 cents. 39edt is the ninth &lt;a class="wiki_link" href="/The%20Riemann%20Zeta%20Function%20and%20Tuning#Removing primes"&gt;no-twos zeta peak edt&lt;/a&gt;.&lt;/body&gt;&lt;/html&gt;</pre></div>