5040edo: Difference between revisions

Eliora (talk | contribs)
Eliora (talk | contribs)
Line 11: Line 11:
{{Primes in edo|5040|columns=20}}
{{Primes in edo|5040|columns=20}}
{| class="wikitable"
{| class="wikitable"
!Prime ''p''
|2
|3
|5
|7
|11
|13
|17
|19
|23
|-
!Contorsion
!Contorsion
order for 2.p   
order for 2.''p''    


subgroup
subgroup
|5040
|5040
|4    
|4
|3    
|3
|1  
|1
|12  
|12
|10  
|10
|63  
|63
|10  
|10
|7  
|7
|}
|}
5040 is both a superabundant and a highly composite number, meaning it's amount of symmetrical chords and subscales increases to a record, and the amount of notes which make up those scales, if stretched end-to-end, also is largest relative to the number's size.  
5040 is both a superabundant and a highly composite number, meaning it's amount of symmetrical chords and subscales increases to a record, and the amount of notes which make up those scales, if stretched end-to-end, also is largest relative to the number's size.