35edo: Difference between revisions
Wikispaces>guest **Imported revision 329429914 - Original comment: ** |
Wikispaces>guest **Imported revision 329438968 - Original comment: ** |
||
Line 1: | Line 1: | ||
<h2>IMPORTED REVISION FROM WIKISPACES</h2> | <h2>IMPORTED REVISION FROM WIKISPACES</h2> | ||
This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br> | This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br> | ||
: This revision was by author [[User:guest|guest]] and made on <tt>2012-05-03 | : This revision was by author [[User:guest|guest]] and made on <tt>2012-05-03 12:03:23 UTC</tt>.<br> | ||
: The original revision id was <tt> | : The original revision id was <tt>329438968</tt>.<br> | ||
: The revision comment was: <tt></tt><br> | : The revision comment was: <tt></tt><br> | ||
The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br> | The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br> | ||
<h4>Original Wikitext content:</h4> | <h4>Original Wikitext content:</h4> | ||
<div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;white-space: pre-wrap ! important" class="old-revision-html"> | <div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;white-space: pre-wrap ! important" class="old-revision-html">35-tET or 35-[[xenharmonic/edo|EDO]] refers to a tuning system which divides the octave into 35 steps of approximately [[xenharmonic/cent|34.29¢]] each. | ||
35 | As 35 is 5 times 7, 35edo allows for mixing the two smallest xenharmonic [[xenharmonic/macrotonal edos|macrotonal edos]]: [[xenharmonic/5edo|5edo]] and [[xenharmonic/7edo|7edo]]. A single degree of 35edo represents the difference between 7edo's narrow fifth of 685.71¢ and 5edo's wide fifth of 720¢. 35edo can also represent the 2.3.5.7.11.17 [[xenharmonic/Just intonation subgroups|subgroup]] and 2.9.5.7.11.17 subgroup, because of the accuracy of 9 and the flatness of all other subgroup generators. Therefore among whitewood tunings it is very versatile, you can switch between these different subgroups if you don't mind having to use two different 3/2s to reach the inconsistent 9, and if you ignore [[xenharmonic/22edo|22edo]]'s consistent representation of both subgroups. | ||
A good beggining for start to play 35-EDO is with the Sub-diatonic scale, that is a [[xenharmonic/MOS|MOS]] of 3L2s: 9 4 9 9 4. | |||
=Intervals= | |||
|| Degrees of 35-EDO || Cents value || Ratios in 2.5.7.11.17 subgroup || Ratios with 3 || Ratios with 9 || | |||
|| 0 || 0 || 1/1 || || || | |||
|| 1 || 34.29 || || || || | |||
|| 2 || 68.57 || || || || | |||
|| 3 || 102.86 || 17/16 || || 18/17 || | |||
|| 4 || 137.14 || || 12/11 || || | |||
|| 5 || 171.43 || 11/10 || || 10/9 || | |||
|| 6 || 205.71 || || || 9/8 || | |||
|| 7 || 240 || 8/7 || || || | |||
|| 8 || 274.29 || 20/17 || 7/6 || || | |||
|| 9 || 308.57 || || 6/5 || || | |||
|| 10 || 342.86 || 17/14 || || 11/9 || | |||
|| 11 || 377.14 || 5/4 || || || | |||
|| 12 || 411.43 || 14/11 || || 14/11 || | |||
|| 13 || 445.71 || 22/17 || || 9/7 || | |||
|| 14 || 480 || || || || | |||
|| 15 || 514.29 || || 4/3 || || | |||
|| 16 || 548.57 || 11/8 || || || | |||
|| 17 || 582.86 || 7/5 || 24/17 || || | |||
|| 18 || 617.14 || 10/7 || 17/12 || || | |||
|| 19 || 651.43 || 16/11 || || || | |||
|| 20 || 685.71 || || 3/2 || || | |||
|| 21 || 720 || || || || | |||
|| 22 || 754.29 || 17/11 || || 14/9 || | |||
|| 23 || 788.57 || 11/7 || || || | |||
|| 24 || 822.86 || 8/5 || || || | |||
|| 25 || 857.15 || || || 18/11 || | |||
|| 26 || 891.43 || || 5/3 || || | |||
|| 27 || 925.71 || 17/10 || 12/7 || || | |||
|| 28 || 960 || 7/4 || || || | |||
|| 29 || 994.29 || || || 16/9 || | |||
|| 30 || 1028.57 || 20/11 || || 9/5 || | |||
|| 31 || 1062.86 || || 11/6 || || | |||
|| 32 || 1097.14 || 32/17 || || 17/9 || | |||
|| 33 || 1131.43 || || || || | |||
|| 34 || 1165.71 || || || || | |||
=Rank two temperaments= | |||
||~ Periods | |||
per octave ||~ Generator ||~ Temperaments || | |||
|| | || 1 || 3\35 || Ripple || | ||
|| 1 | || 1 || 6\35 || || | ||
|| 1 || 8\35 || || | |||
|| 3 || | || 1 || 9\35 || [[xenharmonic/Myna|Myna]] || | ||
|| | || 1 || 11\35 || [[xenharmonic/Magic|Magic]] || | ||
|| 1 || 12\35 || || | |||
|| 6 | || 1 || 13\35 || [[xenharmonic/Sensi|Sensi]] || | ||
|| | || 1 || 16\35 || || | ||
|| 1 || 17\35 || || | |||
|| || || || | |||
|| | || 5 || 2\35 || [[xenharmonic/Blackwood|Blackwood]] || | ||
|| || || || | |||
|| | || 7 || 1\35 || [[xenharmonic/Apotome family|Whitewood]]/[[xenharmonic/Apotome family#Redwood|Redwood]] ||</pre></div> | ||
|| | |||
|| | |||
|| | |||
|| | |||
|| | |||
|| | |||
| | |||
<h4>Original HTML content:</h4> | <h4>Original HTML content:</h4> | ||
<div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;width:200%;white-space: pre-wrap ! important" class="old-revision-html"><html><head><title>35edo</title></head><body> | <div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;width:200%;white-space: pre-wrap ! important" class="old-revision-html"><html><head><title>35edo</title></head><body>35-tET or 35-<a class="wiki_link" href="http://xenharmonic.wikispaces.com/edo">EDO</a> refers to a tuning system which divides the octave into 35 steps of approximately <a class="wiki_link" href="http://xenharmonic.wikispaces.com/cent">34.29¢</a> each.<br /> | ||
35-tET or 35-<a class="wiki_link" href="http://xenharmonic.wikispaces.com/edo">EDO</a> | |||
<br /> | <br /> | ||
As 35 is 5 times 7, 35edo allows for mixing the two smallest xenharmonic <a class="wiki_link" href="http://xenharmonic.wikispaces.com/macrotonal%20edos">macrotonal edos</a>: <a class="wiki_link" href="http://xenharmonic.wikispaces.com/5edo">5edo</a> and <a class="wiki_link" href="http://xenharmonic.wikispaces.com/7edo">7edo</a>. A single degree of 35edo represents the difference between 7edo's narrow fifth of 685.71¢ and 5edo's wide fifth of 720¢. 35edo can also represent the 2.3.5.7.11.17 <a class="wiki_link" href="http://xenharmonic.wikispaces.com/Just%20intonation%20subgroups">subgroup</a> and 2.9.5.7.11.17 subgroup, because of the accuracy of 9 and the flatness of all other subgroup generators. Therefore among whitewood tunings it is very versatile, you can switch between these different subgroups if you don't mind having to use two different 3/2s to reach the inconsistent 9, and if you ignore <a class="wiki_link" href="http://xenharmonic.wikispaces.com/22edo">22edo</a>'s | As 35 is 5 times 7, 35edo allows for mixing the two smallest xenharmonic <a class="wiki_link" href="http://xenharmonic.wikispaces.com/macrotonal%20edos">macrotonal edos</a>: <a class="wiki_link" href="http://xenharmonic.wikispaces.com/5edo">5edo</a> and <a class="wiki_link" href="http://xenharmonic.wikispaces.com/7edo">7edo</a>. A single degree of 35edo represents the difference between 7edo's narrow fifth of 685.71¢ and 5edo's wide fifth of 720¢. 35edo can also represent the 2.3.5.7.11.17 <a class="wiki_link" href="http://xenharmonic.wikispaces.com/Just%20intonation%20subgroups">subgroup</a> and 2.9.5.7.11.17 subgroup, because of the accuracy of 9 and the flatness of all other subgroup generators. Therefore among whitewood tunings it is very versatile, you can switch between these different subgroups if you don't mind having to use two different 3/2s to reach the inconsistent 9, and if you ignore <a class="wiki_link" href="http://xenharmonic.wikispaces.com/22edo">22edo</a>'s consistent representation of both subgroups.<br /> | ||
<br /> | <br /> | ||
A good beggining for start to play 35-EDO is with the Sub-diatonic scale, that is a <a class="wiki_link" href="http://xenharmonic.wikispaces.com/MOS">MOS</a> of 3L2s: 9 4 9 9 4.<br /> | A good beggining for start to play 35-EDO is with the Sub-diatonic scale, that is a <a class="wiki_link" href="http://xenharmonic.wikispaces.com/MOS">MOS</a> of 3L2s: 9 4 9 9 4.<br /> | ||
<br /> | <br /> | ||
<!-- ws:start:WikiTextHeadingRule: | <!-- ws:start:WikiTextHeadingRule:0:&lt;h1&gt; --><h1 id="toc0"><a name="Intervals"></a><!-- ws:end:WikiTextHeadingRule:0 -->Intervals</h1> | ||
<br /> | |||
<br /> | |||
<table class="wiki_table"> | <table class="wiki_table"> | ||
Line 69: | Line 87: | ||
<td>Cents value<br /> | <td>Cents value<br /> | ||
</td> | </td> | ||
<td>Ratios in 2 | <td>Ratios in 2.5.7.11.17 subgroup<br /> | ||
</td> | |||
<td>Ratios with 3<br /> | |||
</td> | </td> | ||
<td>Ratios | <td>Ratios with 9<br /> | ||
</td> | </td> | ||
</tr> | </tr> | ||
Line 81: | Line 101: | ||
<td>1/1<br /> | <td>1/1<br /> | ||
</td> | </td> | ||
<td> | <td><br /> | ||
</td> | |||
<td><br /> | |||
</td> | </td> | ||
</tr> | </tr> | ||
Line 88: | Line 110: | ||
</td> | </td> | ||
<td>34.29<br /> | <td>34.29<br /> | ||
</td> | |||
<td><br /> | |||
</td> | </td> | ||
<td><br /> | <td><br /> | ||
Line 98: | Line 122: | ||
</td> | </td> | ||
<td>68.57<br /> | <td>68.57<br /> | ||
</td> | |||
<td><br /> | |||
</td> | </td> | ||
<td><br /> | <td><br /> | ||
Line 111: | Line 137: | ||
<td>17/16<br /> | <td>17/16<br /> | ||
</td> | </td> | ||
<td> | <td><br /> | ||
</td> | |||
<td>18/17<br /> | |||
</td> | </td> | ||
</tr> | </tr> | ||
Line 118: | Line 146: | ||
</td> | </td> | ||
<td>137.14<br /> | <td>137.14<br /> | ||
</td> | |||
<td><br /> | |||
</td> | </td> | ||
<td>12/11<br /> | <td>12/11<br /> | ||
Line 131: | Line 161: | ||
<td>11/10<br /> | <td>11/10<br /> | ||
</td> | </td> | ||
<td>10/9 | <td><br /> | ||
</td> | |||
<td>10/9<br /> | |||
</td> | </td> | ||
</tr> | </tr> | ||
Line 138: | Line 170: | ||
</td> | </td> | ||
<td>205.71<br /> | <td>205.71<br /> | ||
</td> | |||
<td><br /> | |||
</td> | </td> | ||
<td><br /> | <td><br /> | ||
Line 151: | Line 185: | ||
<td>8/7<br /> | <td>8/7<br /> | ||
</td> | </td> | ||
<td> | <td><br /> | ||
</td> | |||
<td><br /> | |||
</td> | </td> | ||
</tr> | </tr> | ||
Line 159: | Line 195: | ||
<td>274.29<br /> | <td>274.29<br /> | ||
</td> | </td> | ||
<td> | <td>20/17<br /> | ||
</td> | </td> | ||
<td> | <td>7/6<br /> | ||
</td> | |||
<td><br /> | |||
</td> | </td> | ||
</tr> | </tr> | ||
Line 168: | Line 206: | ||
</td> | </td> | ||
<td>308.57<br /> | <td>308.57<br /> | ||
</td> | |||
<td><br /> | |||
</td> | </td> | ||
<td>6/5<br /> | <td>6/5<br /> | ||
Line 181: | Line 221: | ||
<td>17/14<br /> | <td>17/14<br /> | ||
</td> | </td> | ||
<td>11/9 | <td><br /> | ||
</td> | |||
<td>11/9<br /> | |||
</td> | </td> | ||
</tr> | </tr> | ||
Line 191: | Line 233: | ||
<td>5/4<br /> | <td>5/4<br /> | ||
</td> | </td> | ||
<td> | <td><br /> | ||
</td> | |||
<td><br /> | |||
</td> | </td> | ||
</tr> | </tr> | ||
Line 200: | Line 244: | ||
</td> | </td> | ||
<td>14/11<br /> | <td>14/11<br /> | ||
</td> | |||
<td><br /> | |||
</td> | </td> | ||
<td>14/11<br /> | <td>14/11<br /> | ||
Line 211: | Line 257: | ||
<td>22/17<br /> | <td>22/17<br /> | ||
</td> | </td> | ||
<td>9/7 | <td><br /> | ||
</td> | |||
<td>9/7<br /> | |||
</td> | </td> | ||
</tr> | </tr> | ||
Line 218: | Line 266: | ||
</td> | </td> | ||
<td>480<br /> | <td>480<br /> | ||
</td> | |||
<td><br /> | |||
</td> | </td> | ||
<td><br /> | <td><br /> | ||
Line 228: | Line 278: | ||
</td> | </td> | ||
<td>514.29<br /> | <td>514.29<br /> | ||
</td> | |||
<td><br /> | |||
</td> | </td> | ||
<td>4/3<br /> | <td>4/3<br /> | ||
Line 241: | Line 293: | ||
<td>11/8<br /> | <td>11/8<br /> | ||
</td> | </td> | ||
<td> | <td><br /> | ||
</td> | |||
<td><br /> | |||
</td> | </td> | ||
</tr> | </tr> | ||
Line 249: | Line 303: | ||
<td>582.86<br /> | <td>582.86<br /> | ||
</td> | </td> | ||
<td>7/5 | <td>7/5<br /> | ||
</td> | </td> | ||
<td> | <td>24/17<br /> | ||
</td> | |||
<td><br /> | |||
</td> | </td> | ||
</tr> | </tr> | ||
Line 259: | Line 315: | ||
<td>617.14<br /> | <td>617.14<br /> | ||
</td> | </td> | ||
<td>10/7 | <td>10/7<br /> | ||
</td> | </td> | ||
<td> | <td>17/12<br /> | ||
</td> | |||
<td><br /> | |||
</td> | </td> | ||
</tr> | </tr> | ||
Line 271: | Line 329: | ||
<td>16/11<br /> | <td>16/11<br /> | ||
</td> | </td> | ||
<td> | <td><br /> | ||
</td> | |||
<td><br /> | |||
</td> | </td> | ||
</tr> | </tr> | ||
Line 278: | Line 338: | ||
</td> | </td> | ||
<td>685.71<br /> | <td>685.71<br /> | ||
</td> | |||
<td><br /> | |||
</td> | </td> | ||
<td>3/2<br /> | <td>3/2<br /> | ||
Line 288: | Line 350: | ||
</td> | </td> | ||
<td>720<br /> | <td>720<br /> | ||
</td> | |||
<td><br /> | |||
</td> | </td> | ||
<td><br /> | <td><br /> | ||
Line 301: | Line 365: | ||
<td>17/11<br /> | <td>17/11<br /> | ||
</td> | </td> | ||
<td>14/9 | <td><br /> | ||
</td> | |||
<td>14/9<br /> | |||
</td> | </td> | ||
</tr> | </tr> | ||
Line 311: | Line 377: | ||
<td>11/7<br /> | <td>11/7<br /> | ||
</td> | </td> | ||
<td> | <td><br /> | ||
</td> | |||
<td><br /> | |||
</td> | </td> | ||
</tr> | </tr> | ||
Line 321: | Line 389: | ||
<td>8/5<br /> | <td>8/5<br /> | ||
</td> | </td> | ||
<td> | <td><br /> | ||
</td> | |||
<td><br /> | |||
</td> | </td> | ||
</tr> | </tr> | ||
Line 328: | Line 398: | ||
</td> | </td> | ||
<td>857.15<br /> | <td>857.15<br /> | ||
</td> | |||
<td><br /> | |||
</td> | </td> | ||
<td><br /> | <td><br /> | ||
Line 338: | Line 410: | ||
</td> | </td> | ||
<td>891.43<br /> | <td>891.43<br /> | ||
</td> | |||
<td><br /> | |||
</td> | </td> | ||
<td>5/3<br /> | <td>5/3<br /> | ||
Line 349: | Line 423: | ||
<td>925.71<br /> | <td>925.71<br /> | ||
</td> | </td> | ||
<td>12/7 | <td>17/10<br /> | ||
</td> | |||
<td>12/7<br /> | |||
</td> | </td> | ||
<td> | <td><br /> | ||
</td> | </td> | ||
</tr> | </tr> | ||
Line 361: | Line 437: | ||
<td>7/4<br /> | <td>7/4<br /> | ||
</td> | </td> | ||
<td> | <td><br /> | ||
</td> | |||
<td><br /> | |||
</td> | </td> | ||
</tr> | </tr> | ||
Line 368: | Line 446: | ||
</td> | </td> | ||
<td>994.29<br /> | <td>994.29<br /> | ||
</td> | |||
<td><br /> | |||
</td> | </td> | ||
<td><br /> | <td><br /> | ||
Line 381: | Line 461: | ||
<td>20/11<br /> | <td>20/11<br /> | ||
</td> | </td> | ||
<td> | <td><br /> | ||
</td> | |||
<td>9/5<br /> | |||
</td> | </td> | ||
</tr> | </tr> | ||
Line 388: | Line 470: | ||
</td> | </td> | ||
<td>1062.86<br /> | <td>1062.86<br /> | ||
</td> | |||
<td><br /> | |||
</td> | </td> | ||
<td>11/6<br /> | <td>11/6<br /> | ||
Line 401: | Line 485: | ||
<td>32/17<br /> | <td>32/17<br /> | ||
</td> | </td> | ||
<td> | <td><br /> | ||
</td> | |||
<td>17/9<br /> | |||
</td> | </td> | ||
</tr> | </tr> | ||
Line 408: | Line 494: | ||
</td> | </td> | ||
<td>1131.43<br /> | <td>1131.43<br /> | ||
</td> | |||
<td><br /> | |||
</td> | </td> | ||
<td><br /> | <td><br /> | ||
Line 422: | Line 510: | ||
</td> | </td> | ||
<td><br /> | <td><br /> | ||
</td> | |||
<td><br /> | |||
</td> | |||
</tr> | |||
</table> | |||
<!-- ws:start:WikiTextHeadingRule:2:&lt;h1&gt; --><h1 id="toc1"><a name="Rank two temperaments"></a><!-- ws:end:WikiTextHeadingRule:2 -->Rank two temperaments</h1> | |||
<br /> | |||
<br /> | |||
<table class="wiki_table"> | |||
<tr> | |||
<th>Periods<br /> | |||
per octave<br /> | |||
</th> | |||
<th>Generator<br /> | |||
</th> | |||
<th>Temperaments<br /> | |||
</th> | |||
</tr> | |||
<tr> | |||
<td>1<br /> | |||
</td> | |||
<td>3\35<br /> | |||
</td> | |||
<td>Ripple<br /> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td>1<br /> | |||
</td> | |||
<td>6\35<br /> | |||
</td> | |||
<td><br /> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td>1<br /> | |||
</td> | |||
<td>8\35<br /> | |||
</td> | |||
<td><br /> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td>1<br /> | |||
</td> | |||
<td>9\35<br /> | |||
</td> | |||
<td><a class="wiki_link" href="http://xenharmonic.wikispaces.com/Myna">Myna</a><br /> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td>1<br /> | |||
</td> | |||
<td>11\35<br /> | |||
</td> | |||
<td><a class="wiki_link" href="http://xenharmonic.wikispaces.com/Magic">Magic</a><br /> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td>1<br /> | |||
</td> | |||
<td>12\35<br /> | |||
</td> | |||
<td><br /> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td>1<br /> | |||
</td> | |||
<td>13\35<br /> | |||
</td> | |||
<td><a class="wiki_link" href="http://xenharmonic.wikispaces.com/Sensi">Sensi</a><br /> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td>1<br /> | |||
</td> | |||
<td>16\35<br /> | |||
</td> | |||
<td><br /> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td>1<br /> | |||
</td> | |||
<td>17\35<br /> | |||
</td> | |||
<td><br /> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td><br /> | |||
</td> | |||
<td><br /> | |||
</td> | |||
<td><br /> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td>5<br /> | |||
</td> | |||
<td>2\35<br /> | |||
</td> | |||
<td><a class="wiki_link" href="http://xenharmonic.wikispaces.com/Blackwood">Blackwood</a><br /> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td><br /> | |||
</td> | |||
<td><br /> | |||
</td> | |||
<td><br /> | |||
</td> | |||
</tr> | |||
<tr> | |||
<td>7<br /> | |||
</td> | |||
<td>1\35<br /> | |||
</td> | |||
<td><a class="wiki_link" href="http://xenharmonic.wikispaces.com/Apotome%20family">Whitewood</a>/<a class="wiki_link" href="http://xenharmonic.wikispaces.com/Apotome%20family#Redwood">Redwood</a><br /> | |||
</td> | </td> | ||
</tr> | </tr> |