35edo: Difference between revisions

Wikispaces>guest
**Imported revision 329438968 - Original comment: **
Wikispaces>guest
**Imported revision 329524706 - Original comment: **
Line 1: Line 1:
<h2>IMPORTED REVISION FROM WIKISPACES</h2>
<h2>IMPORTED REVISION FROM WIKISPACES</h2>
This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br>
This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br>
: This revision was by author [[User:guest|guest]] and made on <tt>2012-05-03 12:03:23 UTC</tt>.<br>
: This revision was by author [[User:guest|guest]] and made on <tt>2012-05-03 14:15:51 UTC</tt>.<br>
: The original revision id was <tt>329438968</tt>.<br>
: The original revision id was <tt>329524706</tt>.<br>
: The revision comment was: <tt></tt><br>
: The revision comment was: <tt></tt><br>
The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br>
The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br>
Line 8: Line 8:
<div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;white-space: pre-wrap ! important" class="old-revision-html">35-tET or 35-[[xenharmonic/edo|EDO]] refers to a tuning system which divides the octave into 35 steps of approximately [[xenharmonic/cent|34.29¢]] each.
<div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;white-space: pre-wrap ! important" class="old-revision-html">35-tET or 35-[[xenharmonic/edo|EDO]] refers to a tuning system which divides the octave into 35 steps of approximately [[xenharmonic/cent|34.29¢]] each.


As 35 is 5 times 7, 35edo allows for mixing the two smallest xenharmonic [[xenharmonic/macrotonal edos|macrotonal edos]]: [[xenharmonic/5edo|5edo]] and [[xenharmonic/7edo|7edo]]. A single degree of 35edo represents the difference between 7edo's narrow fifth of 685.71¢ and 5edo's wide fifth of 720¢. 35edo can also represent the 2.3.5.7.11.17 [[xenharmonic/Just intonation subgroups|subgroup]] and 2.9.5.7.11.17 subgroup, because of the accuracy of 9 and the flatness of all other subgroup generators. Therefore among whitewood tunings it is very versatile, you can switch between these different subgroups if you don't mind having to use two different 3/2s to reach the inconsistent 9, and if you ignore [[xenharmonic/22edo|22edo]]'s consistent representation of both subgroups.
As 35 is 5 times 7, 35edo allows for mixing the two smallest xenharmonic [[xenharmonic/macrotonal edos|macrotonal edos]]: [[xenharmonic/5edo|5edo]] and [[xenharmonic/7edo|7edo]]. A single degree of 35edo represents the difference between 7edo's narrow fifth of 685.71¢ and 5edo's wide fifth of 720¢. 35edo can also represent the 2.3.5.7.11.17 [[xenharmonic/Just intonation subgroups|subgroup]] and 2.9.5.7.11.17 subgroup, because of the accuracy of 9 and the flatness of all other subgroup generators. Therefore among whitewood tunings it is very versatile, you can switch between these different subgroups if you don't mind having to use two different 3/2s to reach the inconsistent 9, and if you ignore [[xenharmonic/22edo|22edo]]'s consistent representation of both subgroups. 35edo is the optimal patent val for [[xenharmonic/Greenwoodmic temperaments|greenwood]] and [[Greenwoodmic temperaments#Secund|secund]] temperaments.


A good beggining for start to play 35-EDO is with the Sub-diatonic scale, that is a [[xenharmonic/MOS|MOS]] of 3L2s: 9 4 9 9 4.
A good beggining for start to play 35-EDO is with the Sub-diatonic scale, that is a [[xenharmonic/MOS|MOS]] of 3L2s: 9 4 9 9 4.
Line 57: Line 57:
per octave ||~ Generator ||~ Temperaments ||
per octave ||~ Generator ||~ Temperaments ||
|| 1 || 3\35 || Ripple ||
|| 1 || 3\35 || Ripple ||
||  || 4\35 || [[Greenwoodmic temperaments#Secund|Secund]] ||
|| 1 || 6\35 ||  ||
|| 1 || 6\35 ||  ||
|| 1 || 8\35 ||  ||
|| 1 || 8\35 ||  ||
Line 68: Line 69:
|| 5 || 2\35 || [[xenharmonic/Blackwood|Blackwood]] ||
|| 5 || 2\35 || [[xenharmonic/Blackwood|Blackwood]] ||
||  ||  ||  ||
||  ||  ||  ||
|| 7 || 1\35 || [[xenharmonic/Apotome family|Whitewood]]/[[xenharmonic/Apotome family#Redwood|Redwood]] ||</pre></div>
|| 7 || 1\35 || [[xenharmonic/Apotome family|Whitewood]]/[[xenharmonic/Apotome family#Redwood|Redwood]]/[[xenharmonic/Greenwoodmic temperaments|Greenwood]] ||</pre></div>
<h4>Original HTML content:</h4>
<h4>Original HTML content:</h4>
<div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;width:200%;white-space: pre-wrap ! important" class="old-revision-html">&lt;html&gt;&lt;head&gt;&lt;title&gt;35edo&lt;/title&gt;&lt;/head&gt;&lt;body&gt;35-tET or 35-&lt;a class="wiki_link" href="http://xenharmonic.wikispaces.com/edo"&gt;EDO&lt;/a&gt; refers to a tuning system which divides the octave into 35 steps of approximately &lt;a class="wiki_link" href="http://xenharmonic.wikispaces.com/cent"&gt;34.29¢&lt;/a&gt; each.&lt;br /&gt;
<div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;width:200%;white-space: pre-wrap ! important" class="old-revision-html">&lt;html&gt;&lt;head&gt;&lt;title&gt;35edo&lt;/title&gt;&lt;/head&gt;&lt;body&gt;35-tET or 35-&lt;a class="wiki_link" href="http://xenharmonic.wikispaces.com/edo"&gt;EDO&lt;/a&gt; refers to a tuning system which divides the octave into 35 steps of approximately &lt;a class="wiki_link" href="http://xenharmonic.wikispaces.com/cent"&gt;34.29¢&lt;/a&gt; each.&lt;br /&gt;
&lt;br /&gt;
&lt;br /&gt;
As 35 is 5 times 7, 35edo allows for mixing the two smallest xenharmonic &lt;a class="wiki_link" href="http://xenharmonic.wikispaces.com/macrotonal%20edos"&gt;macrotonal edos&lt;/a&gt;: &lt;a class="wiki_link" href="http://xenharmonic.wikispaces.com/5edo"&gt;5edo&lt;/a&gt; and &lt;a class="wiki_link" href="http://xenharmonic.wikispaces.com/7edo"&gt;7edo&lt;/a&gt;. A single degree of 35edo represents the difference between 7edo's narrow fifth of 685.71¢ and 5edo's wide fifth of 720¢. 35edo can also represent the 2.3.5.7.11.17 &lt;a class="wiki_link" href="http://xenharmonic.wikispaces.com/Just%20intonation%20subgroups"&gt;subgroup&lt;/a&gt; and 2.9.5.7.11.17 subgroup, because of the accuracy of 9 and the flatness of all other subgroup generators. Therefore among whitewood tunings it is very versatile, you can switch between these different subgroups if you don't mind having to use two different 3/2s to reach the inconsistent 9, and if you ignore &lt;a class="wiki_link" href="http://xenharmonic.wikispaces.com/22edo"&gt;22edo&lt;/a&gt;'s consistent representation of both subgroups.&lt;br /&gt;
As 35 is 5 times 7, 35edo allows for mixing the two smallest xenharmonic &lt;a class="wiki_link" href="http://xenharmonic.wikispaces.com/macrotonal%20edos"&gt;macrotonal edos&lt;/a&gt;: &lt;a class="wiki_link" href="http://xenharmonic.wikispaces.com/5edo"&gt;5edo&lt;/a&gt; and &lt;a class="wiki_link" href="http://xenharmonic.wikispaces.com/7edo"&gt;7edo&lt;/a&gt;. A single degree of 35edo represents the difference between 7edo's narrow fifth of 685.71¢ and 5edo's wide fifth of 720¢. 35edo can also represent the 2.3.5.7.11.17 &lt;a class="wiki_link" href="http://xenharmonic.wikispaces.com/Just%20intonation%20subgroups"&gt;subgroup&lt;/a&gt; and 2.9.5.7.11.17 subgroup, because of the accuracy of 9 and the flatness of all other subgroup generators. Therefore among whitewood tunings it is very versatile, you can switch between these different subgroups if you don't mind having to use two different 3/2s to reach the inconsistent 9, and if you ignore &lt;a class="wiki_link" href="http://xenharmonic.wikispaces.com/22edo"&gt;22edo&lt;/a&gt;'s consistent representation of both subgroups. 35edo is the optimal patent val for &lt;a class="wiki_link" href="http://xenharmonic.wikispaces.com/Greenwoodmic%20temperaments"&gt;greenwood&lt;/a&gt; and &lt;a class="wiki_link" href="/Greenwoodmic%20temperaments#Secund"&gt;secund&lt;/a&gt; temperaments.&lt;br /&gt;
&lt;br /&gt;
&lt;br /&gt;
A good beggining for start to play 35-EDO is with the Sub-diatonic scale, that is a &lt;a class="wiki_link" href="http://xenharmonic.wikispaces.com/MOS"&gt;MOS&lt;/a&gt; of 3L2s: 9 4 9 9 4.&lt;br /&gt;
A good beggining for start to play 35-EDO is with the Sub-diatonic scale, that is a &lt;a class="wiki_link" href="http://xenharmonic.wikispaces.com/MOS"&gt;MOS&lt;/a&gt; of 3L2s: 9 4 9 9 4.&lt;br /&gt;
Line 537: Line 538:
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;Ripple&lt;br /&gt;
         &lt;td&gt;Ripple&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;4\35&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;a class="wiki_link" href="/Greenwoodmic%20temperaments#Secund"&gt;Secund&lt;/a&gt;&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
     &lt;/tr&gt;
     &lt;/tr&gt;
Line 632: Line 641:
         &lt;td&gt;1\35&lt;br /&gt;
         &lt;td&gt;1\35&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;&lt;a class="wiki_link" href="http://xenharmonic.wikispaces.com/Apotome%20family"&gt;Whitewood&lt;/a&gt;/&lt;a class="wiki_link" href="http://xenharmonic.wikispaces.com/Apotome%20family#Redwood"&gt;Redwood&lt;/a&gt;&lt;br /&gt;
         &lt;td&gt;&lt;a class="wiki_link" href="http://xenharmonic.wikispaces.com/Apotome%20family"&gt;Whitewood&lt;/a&gt;/&lt;a class="wiki_link" href="http://xenharmonic.wikispaces.com/Apotome%20family#Redwood"&gt;Redwood&lt;/a&gt;/&lt;a class="wiki_link" href="http://xenharmonic.wikispaces.com/Greenwoodmic%20temperaments"&gt;Greenwood&lt;/a&gt;&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
     &lt;/tr&gt;
     &lt;/tr&gt;