35edo: Difference between revisions

Wikispaces>phylingual
**Imported revision 346022092 - Original comment: **
Wikispaces>phylingual
**Imported revision 346022254 - Original comment: **
Line 1: Line 1:
<h2>IMPORTED REVISION FROM WIKISPACES</h2>
<h2>IMPORTED REVISION FROM WIKISPACES</h2>
This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br>
This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br>
: This revision was by author [[User:phylingual|phylingual]] and made on <tt>2012-06-17 19:02:16 UTC</tt>.<br>
: This revision was by author [[User:phylingual|phylingual]] and made on <tt>2012-06-17 19:03:25 UTC</tt>.<br>
: The original revision id was <tt>346022092</tt>.<br>
: The original revision id was <tt>346022254</tt>.<br>
: The revision comment was: <tt></tt><br>
: The revision comment was: <tt></tt><br>
The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br>
The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br>
Line 8: Line 8:
<div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;white-space: pre-wrap ! important" class="old-revision-html">35-tET or 35-[[xenharmonic/edo|EDO]] refers to a tuning system which divides the octave into 35 steps of approximately [[xenharmonic/cent|34.29¢]] each.
<div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;white-space: pre-wrap ! important" class="old-revision-html">35-tET or 35-[[xenharmonic/edo|EDO]] refers to a tuning system which divides the octave into 35 steps of approximately [[xenharmonic/cent|34.29¢]] each.


As 35 is 5 times 7, 35edo allows for mixing the two smallest xenharmonic [[xenharmonic/macrotonal edos|macrotonal edos]]: [[xenharmonic/5edo|5edo]] and [[xenharmonic/7edo|7edo]]. A single degree of 35edo represents the difference between 7edo's narrow fifth of 685.71¢ and 5edo's wide fifth of 720¢. Because it includes 7edo, 35edo tunes the 29th harmonic with +1 cent of error. 35edo can also represent the 2.3.5.7.11.17 [[xenharmonic/Just intonation subgroups|subgroup]] and 2.9.5.7.11.17 subgroup, because of the accuracy of 9 and the flatness of all other subgroup generators (7/5 and 17/11 stand out, having less than 1 cent error). Therefore among whitewood tunings it is very versatile, you can switch between these different subgroups if you don't mind having to use two different 3/2s to reach the inconsistent 9 (a characteristic of whitewood tunings), and if you ignore [[xenharmonic/22edo|22edo]]'s more in-tune versions of 35edo MOS's and consistent representation of both subgroups. 35edo has the optimal patent val for [[xenharmonic/Greenwoodmic temperaments|greenwood]] and [[xenharmonic/Greenwoodmic temperaments#Secund|secund]] temperaments.
As 35 is 5 times 7, 35edo allows for mixing the two smallest xenharmonic [[xenharmonic/macrotonal edos|macrotonal edos]]: [[xenharmonic/5edo|5edo]] and [[xenharmonic/7edo|7edo]]. A single degree of 35edo represents the difference between 7edo's narrow fifth of 685.71¢ and 5edo's wide fifth of 720¢. Because it includes 7edo, 35edo tunes the 29th harmonic with +1 cent of error. 35edo can also represent the 2.3.5.7.11.17 [[xenharmonic/Just intonation subgroups|subgroup]] and 2.9.5.7.11.17 subgroup, because of the accuracy of 9 and the flatness of all other subgroup generators (7/5 and 17/11 stand out, having less than 1 cent error). Therefore among whitewood tunings it is very versatile; you can switch between these different subgroups if you don't mind having to use two different 3/2s to reach the inconsistent 9 (a characteristic of whitewood tunings), and if you ignore [[xenharmonic/22edo|22edo]]'s more in-tune versions of 35edo MOS's and consistent representation of both subgroups. 35edo has the optimal patent val for [[xenharmonic/Greenwoodmic temperaments|greenwood]] and [[xenharmonic/Greenwoodmic temperaments#Secund|secund]] temperaments.


A good beginning for start to play 35-EDO is with the Sub-diatonic scale, that is a [[xenharmonic/MOS|MOS]] of 3L2s: 9 4 9 9 4.
A good beginning for start to play 35-EDO is with the Sub-diatonic scale, that is a [[xenharmonic/MOS|MOS]] of 3L2s: 9 4 9 9 4.
Line 94: Line 94:
<div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;width:200%;white-space: pre-wrap ! important" class="old-revision-html">&lt;html&gt;&lt;head&gt;&lt;title&gt;35edo&lt;/title&gt;&lt;/head&gt;&lt;body&gt;35-tET or 35-&lt;a class="wiki_link" href="http://xenharmonic.wikispaces.com/edo"&gt;EDO&lt;/a&gt; refers to a tuning system which divides the octave into 35 steps of approximately &lt;a class="wiki_link" href="http://xenharmonic.wikispaces.com/cent"&gt;34.29¢&lt;/a&gt; each.&lt;br /&gt;
<div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;width:200%;white-space: pre-wrap ! important" class="old-revision-html">&lt;html&gt;&lt;head&gt;&lt;title&gt;35edo&lt;/title&gt;&lt;/head&gt;&lt;body&gt;35-tET or 35-&lt;a class="wiki_link" href="http://xenharmonic.wikispaces.com/edo"&gt;EDO&lt;/a&gt; refers to a tuning system which divides the octave into 35 steps of approximately &lt;a class="wiki_link" href="http://xenharmonic.wikispaces.com/cent"&gt;34.29¢&lt;/a&gt; each.&lt;br /&gt;
&lt;br /&gt;
&lt;br /&gt;
As 35 is 5 times 7, 35edo allows for mixing the two smallest xenharmonic &lt;a class="wiki_link" href="http://xenharmonic.wikispaces.com/macrotonal%20edos"&gt;macrotonal edos&lt;/a&gt;: &lt;a class="wiki_link" href="http://xenharmonic.wikispaces.com/5edo"&gt;5edo&lt;/a&gt; and &lt;a class="wiki_link" href="http://xenharmonic.wikispaces.com/7edo"&gt;7edo&lt;/a&gt;. A single degree of 35edo represents the difference between 7edo's narrow fifth of 685.71¢ and 5edo's wide fifth of 720¢. Because it includes 7edo, 35edo tunes the 29th harmonic with +1 cent of error. 35edo can also represent the 2.3.5.7.11.17 &lt;a class="wiki_link" href="http://xenharmonic.wikispaces.com/Just%20intonation%20subgroups"&gt;subgroup&lt;/a&gt; and 2.9.5.7.11.17 subgroup, because of the accuracy of 9 and the flatness of all other subgroup generators (7/5 and 17/11 stand out, having less than 1 cent error). Therefore among whitewood tunings it is very versatile, you can switch between these different subgroups if you don't mind having to use two different 3/2s to reach the inconsistent 9 (a characteristic of whitewood tunings), and if you ignore &lt;a class="wiki_link" href="http://xenharmonic.wikispaces.com/22edo"&gt;22edo&lt;/a&gt;'s more in-tune versions of 35edo MOS's and consistent representation of both subgroups. 35edo has the optimal patent val for &lt;a class="wiki_link" href="http://xenharmonic.wikispaces.com/Greenwoodmic%20temperaments"&gt;greenwood&lt;/a&gt; and &lt;a class="wiki_link" href="http://xenharmonic.wikispaces.com/Greenwoodmic%20temperaments#Secund"&gt;secund&lt;/a&gt; temperaments.&lt;br /&gt;
As 35 is 5 times 7, 35edo allows for mixing the two smallest xenharmonic &lt;a class="wiki_link" href="http://xenharmonic.wikispaces.com/macrotonal%20edos"&gt;macrotonal edos&lt;/a&gt;: &lt;a class="wiki_link" href="http://xenharmonic.wikispaces.com/5edo"&gt;5edo&lt;/a&gt; and &lt;a class="wiki_link" href="http://xenharmonic.wikispaces.com/7edo"&gt;7edo&lt;/a&gt;. A single degree of 35edo represents the difference between 7edo's narrow fifth of 685.71¢ and 5edo's wide fifth of 720¢. Because it includes 7edo, 35edo tunes the 29th harmonic with +1 cent of error. 35edo can also represent the 2.3.5.7.11.17 &lt;a class="wiki_link" href="http://xenharmonic.wikispaces.com/Just%20intonation%20subgroups"&gt;subgroup&lt;/a&gt; and 2.9.5.7.11.17 subgroup, because of the accuracy of 9 and the flatness of all other subgroup generators (7/5 and 17/11 stand out, having less than 1 cent error). Therefore among whitewood tunings it is very versatile; you can switch between these different subgroups if you don't mind having to use two different 3/2s to reach the inconsistent 9 (a characteristic of whitewood tunings), and if you ignore &lt;a class="wiki_link" href="http://xenharmonic.wikispaces.com/22edo"&gt;22edo&lt;/a&gt;'s more in-tune versions of 35edo MOS's and consistent representation of both subgroups. 35edo has the optimal patent val for &lt;a class="wiki_link" href="http://xenharmonic.wikispaces.com/Greenwoodmic%20temperaments"&gt;greenwood&lt;/a&gt; and &lt;a class="wiki_link" href="http://xenharmonic.wikispaces.com/Greenwoodmic%20temperaments#Secund"&gt;secund&lt;/a&gt; temperaments.&lt;br /&gt;
&lt;br /&gt;
&lt;br /&gt;
A good beginning for start to play 35-EDO is with the Sub-diatonic scale, that is a &lt;a class="wiki_link" href="http://xenharmonic.wikispaces.com/MOS"&gt;MOS&lt;/a&gt; of 3L2s: 9 4 9 9 4.&lt;br /&gt;
A good beginning for start to play 35-EDO is with the Sub-diatonic scale, that is a &lt;a class="wiki_link" href="http://xenharmonic.wikispaces.com/MOS"&gt;MOS&lt;/a&gt; of 3L2s: 9 4 9 9 4.&lt;br /&gt;