34edo: Difference between revisions

Wikispaces>genewardsmith
**Imported revision 497558464 - Original comment: **
Wikispaces>JosephRuhf
**Imported revision 545669406 - Original comment: **
Line 1: Line 1:
<h2>IMPORTED REVISION FROM WIKISPACES</h2>
<h2>IMPORTED REVISION FROM WIKISPACES</h2>
This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br>
This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br>
: This revision was by author [[User:genewardsmith|genewardsmith]] and made on <tt>2014-03-22 11:25:11 UTC</tt>.<br>
: This revision was by author [[User:JosephRuhf|JosephRuhf]] and made on <tt>2015-03-28 21:32:52 UTC</tt>.<br>
: The original revision id was <tt>497558464</tt>.<br>
: The original revision id was <tt>545669406</tt>.<br>
: The revision comment was: <tt></tt><br>
: The revision comment was: <tt></tt><br>
The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br>
The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br>
Line 8: Line 8:
<div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;white-space: pre-wrap ! important" class="old-revision-html">= =  
<div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;white-space: pre-wrap ! important" class="old-revision-html">= =  


34edo divides the octave into 34 equal steps of approximately 35.29412 [[xenharmonic/cent|cent]]s. 34edo contains two [[xenharmonic/17edo|17edo]]'s and the half-octave tritone of 600 cents. It excels as a 5-limit system, with tuning even more accurate than [[31edo]], but with a sharp fifth rather than a flat one, and supports hanson, srutal, tetracot, würschmidt and vishnu temperaments. It does less well in the 7-limit, with two mappings possible for 7/4: a flat one from the patent val, and a sharp one from the 34d val. By way of the patent val 34 supports keemun temperament, and 34d is an excellent alternative to [[22edo]] for 7-limit pajara temperament. In the 11-limit, 34de supports 11-limit pajaric, and in fact is quite close to the POTE tuning; it adds 4375/4374 to the commas of 11-limit pajaric. On the other hand, the 34d val supports pajara, vishnu and würschmidt, adding 4375/4374 to the commas of pajara. Among subgroup temperaments, the patent val supports semaphore on the 2.3.7 subgroup.
34edo divides the octave into 34 equal steps of approximately 35.29412 [[xenharmonic/cent|cent]]s. 34edo contains two [[xenharmonic/17edo|17edo]]'s and the half-octave tritone of 600 cents. It excels as a 5-limit system, with tuning even more accurate than [[31edo]], but with a sharp fifth rather than a flat one, and supports hanson, srutal, tetracot, würschmidt and vishnu temperaments. It does less well in the 7-limit, with two mappings possible for 7/4: a flat one from the patent val, and a sharp one from the 34d val. By way of the patent val 34 supports keemun temperament, and 34d is an excellent alternative to [[22edo]] for 7-limit pajara temperament. In the 11-limit, 34de supports 11-limit pajaric, and in fact is quite close to the POTE tuning; it adds 4375/4374 to the commas of 11-limit pajaric. On the other hand, the 34d val supports pajara, vishnu and würschmidt, adding 4375/4374 to the commas of pajara. Among subgroup temperaments, the patent val supports semaphore on the 2.3.7 subgroup.


===Approximations to Just Intonation===  
===Approximations to Just Intonation===  
Line 15: Line 15:
//Viewed in light of Western diatonic theory, the three extra steps (of 34-et compared to 31-et) in effect widen the intervals between C and D, F and G, and A and B [that is: 6 5 3 6 5 6 3], thus making a distinction between major tones, ratio 9/8 and minor tones, ratio 10/9.// ([[http://en.wikipedia.org/wiki/34_equal_temperament|Wikipedia]])
//Viewed in light of Western diatonic theory, the three extra steps (of 34-et compared to 31-et) in effect widen the intervals between C and D, F and G, and A and B [that is: 6 5 3 6 5 6 3], thus making a distinction between major tones, ratio 9/8 and minor tones, ratio 10/9.// ([[http://en.wikipedia.org/wiki/34_equal_temperament|Wikipedia]])


*The sharpness of ~13 cents of 11/8 can fit somewhat with the 9/8 and 13/8 which both are about 7 cents sharp. Likewise the 20-cent sharpness or flatness of either approximation to 7/4 isn't impossible. The ability to tolerate these errors may depend on subtle natural changes in mood. [[68edo]], double 34, has both these intervals in more perfect form.
*The sharpness of ~13 cents of 11/8 can fit somewhat with the 9/8 and 13/8 which both are about 7 cents sharp. Likewise the 16-cent flatness of the 27\34 approximation to 7/4 isn't impossible. The ability to tolerate these errors may depend on subtle natural changes in mood. [[68edo]], double 34, has both these intervals in more perfect form.


===34edo and phi===  
===34edo and phi===  
Line 42: Line 42:
|| 17 || 1\34 || 35.294 ||  ||
|| 17 || 1\34 || 35.294 ||  ||
===Intervals:===  
===Intervals:===  
|| degrees of 34edo || solfege || cents || approx. ratios of
|| degrees of 34edo || solfege || cents
DMS || approx. ratios of
[[tel/2.3.5.13.17|2.3.5.13.17]] [[xenharmonic/subgroup|subgroup]] || additional ratios
[[tel/2.3.5.13.17|2.3.5.13.17]] [[xenharmonic/subgroup|subgroup]] || additional ratios
of the full [[xenharmonic/17-limit|17-limit]] || pseudo-traditional
of the full [[xenharmonic/17-limit|17-limit]] || pseudo-traditional
notation ||
notation ||
|| 0 || do || 0.0 || 1/1 ||  || C = B^^ = A## ||
|| 0 || do || 0.0 || 1/1 ||  || C = B^^ = A## ||
|| 1 || di || 35.294 ||  ||   || C ^ ||
|| 1 || di || 35.294
|| 2 || rih || 70.588 ||   ||  || Db = C ^^ = B# ||
&lt;span style="background-color: #ffffff;"&gt;10°35'18"&lt;/span&gt; ||  || 50/49 || C ^ ||
|| 3 || ra || 105.882 || 17/16, 18/17, 16/15 || 15/14 || C#v = Db^ ||
|| 2 || rih || 70.588
|| 4 || ru || 141.176 || 13/12 || 14/13, 12/11 || C# ||
&lt;span style="background-color: #ffffff;"&gt;21°10'35"&lt;/span&gt; || 25/24 ||  || Db = C ^^ = B# ||
|| 5 || reh || 176.471 || 10/9 || 11/10 || C#^ = Dv ||
|| 3 || ra || 105.882
|| 6 || re || 211.765 || 9/8, 17/15 || 8/7 || D ||
31°&lt;span style="background-color: #ffffff;"&gt;35'18"&lt;/span&gt; || 17/16, 18/17, 16/15 || 15/14 || C#v = Db^ ||
|| 7 || raw || 247.059 || 15/13 ||   || D^ ||
|| 4 || ru || 141.176
|| 8 || meh || 282.353 || 20/17, 75/64 || 7/6, 13/11 || Eb ||
&lt;span style="background-color: #ffffff;"&gt;42°21'11"&lt;/span&gt; || 13/12 || 14/13, 12/11 || C# ||
|| 9 || me || 317.647 || 6/5 || 17/14 || D#v ||
|| 5 || reh || 176.471
|| 10 || mu || 352.941 || 16/13 || 11/9 || D# ||
53°&lt;span style="background-color: #ffffff;"&gt;58'28"&lt;/span&gt; || 10/9 || 11/10 || C#^ = Dv ||
|| 11 || mi || 388.235 || 5/4 ||  ||  ||
|| 6 || re || 211.765
|| 12 || maa || 423.529 || 51/40, 32/25 || 14/11, 9/7 || E ||
&lt;span style="background-color: #ffffff;"&gt;63°31'46"&lt;/span&gt; || 9/8, 17/15 ||   || D ||
|| 13 || maw || 458.823 || 13/10, 17/13 || 22/17 || E^ = Fv ||
|| 7 || raw || 247.059
|| 14 || fa || 494.118 || 4/3 ||  || F ||
74°&lt;span style="background-color: #ffffff;"&gt;7'4"&lt;/span&gt; || 15/13 || 8/7 || D^ ||
|| 15 || fih || 529.412 ||  || 15/11 || F^ = E#v ||
|| 8 || meh || 282.353
|| 16 || fu || 564.706 || 18/13 || 11/8 || Gb ||
&lt;span style="background-color: #ffffff;"&gt;84°42'21"&lt;/span&gt; || 20/17, 75/64 || 7/6, 13/11 || Eb ||
|| 17 || fi/se || 600 || 17/12, 24/17 || 7/5, 10/7 || Gb^ ||
|| 9 || me || 317.647
|| 18 || su || 635.294 || 13/9 || 16/11 || F# ||
95°&lt;span style="background-color: #ffffff;"&gt;17'39"&lt;/span&gt; || 6/5 || 17/14 || D#v ||
|| 19 || sih || 670.588 ||  || 22/15 || F#^ ||
|| 10 || mu || 352.941
|| 20 || sol || 705.882 || 3/2 ||  || G ||
&lt;span style="background-color: #ffffff;"&gt;105°52'56"&lt;/span&gt; || 16/13 || 11/9 || D# ||
|| 21 || saw || 741.176 || 20/13, 26/17 || 17/11 || G^ ||
|| 11 || mi || 388.235
|| 22 || leh || 776.471 || 25/16, 80/51 || 14/9 || Ab ||
116°&lt;span style="background-color: #ffffff;"&gt;28'14"&lt;/span&gt; || 5/4 ||  ||  ||
|| 23 || le || 811.765 || 8/5 ||  || Ab^ ||
|| 12 || maa || 423.529
|| 24 || lu || 847.059 || 13/8 || 18/11 || G# ||
&lt;span style="background-color: #ffffff;"&gt;127°3'32"&lt;/span&gt; || 51/40, 32/25 || 14/11, 9/7 || E ||
|| 25 || la || 882.353 || 5/3 || 28/17 || Av ||
|| 13 || maw || 458.823
|| 26 || laa || 917.647 || 17/10 || 12/7, 22/13 || A ||
&lt;span style="background-color: #ffffff;"&gt;137°38'49"&lt;/span&gt; || 13/10, 17/13 || 22/17 || E^ = Fv ||
|| 27 || law || 952.941 || 26/15 ||   || A^ = Bbv =G## ||
|| 14 || fa || 494.118
|| 28 || teh || 988.235 || 16/9, 30/17 || 7/4 || Bb ||
&lt;span style="background-color: #ffffff;"&gt;148°14'7"&lt;/span&gt; || 4/3 ||  || F ||
|| 29 || te || 1023.529 || 9/5 || 20/11 || Bb^ ||
|| 15 || fih || 529.412
|| 30 || tu || 1058.823 || 24/13 || 13/7, 11/6 || A# ||
158°&lt;span style="background-color: #ffffff;"&gt;49'15"&lt;/span&gt; ||  || 15/11 || F^ = E#v ||
|| 31 || ti || 1094.118 || 32/17, 17/9, 15/8 || 28/15 || A#^ = Bv ||
|| 16 || fu || 564.706
|| 32 || taa || 1129.412 ||   ||  || B ||
&lt;span style="background-color: #ffffff;"&gt;169°24'42"&lt;/span&gt; || 18/13 || 11/8 || Gb ||
|| 33 || da || 1164.706 ||  ||   || B^ = A##v ||
|| 17 || fi/se || 600
180° || 17/12, 24/17 || 7/5, 10/7 || Gb^ ||
|| 18 || su || 635.294
&lt;span style="background-color: #ffffff;"&gt;190°35'18"&lt;/span&gt; || 13/9 || 16/11 || F# ||
|| 19 || sih || 670.588
&lt;span style="background-color: #ffffff;"&gt;201°10'35"&lt;/span&gt; ||  || 22/15 || F#^ ||
|| 20 || sol || 705.882
&lt;span style="background-color: #ffffff;"&gt;211°45'53"&lt;/span&gt; || 3/2 ||  || G ||
|| 21 || saw || 741.176
&lt;span style="background-color: #ffffff;"&gt;222°21'11"&lt;/span&gt; || 20/13, 26/17 || 17/11 || G^ ||
|| 22 || leh || 776.471
&lt;span style="background-color: #ffffff;"&gt;233°58'28"&lt;/span&gt; || 25/16, 80/51 || 14/9 || Ab ||
|| 23 || le || 811.765
&lt;span style="background-color: #ffffff;"&gt;243°31'46"&lt;/span&gt; || 8/5 ||  || Ab^ ||
|| 24 || lu || 847.059
&lt;span style="background-color: #ffffff;"&gt;254°7'4"&lt;/span&gt; || 13/8 || 18/11 || G# ||
|| 25 || la || 882.353
&lt;span style="background-color: #ffffff;"&gt;264°42'21"&lt;/span&gt; || 5/3 || 28/17 || Av ||
|| 26 || laa || 917.647
&lt;span style="background-color: #ffffff;"&gt;275°17'39"&lt;/span&gt; || 17/10 || 12/7, 22/13 || A ||
|| 27 || law || 952.941
285°&lt;span style="background-color: #ffffff;"&gt;52'56"&lt;/span&gt; || 26/15 || 7/4 || A^ = Bbv =G## ||
|| 28 || teh || 988.235
&lt;span style="background-color: #ffffff;"&gt;296°28'14"&lt;/span&gt; || 16/9, 30/17 ||   || Bb ||
|| 29 || te || 1023.529
307°&lt;span style="background-color: #ffffff;"&gt;3'32"&lt;/span&gt; || 9/5 || 20/11 || Bb^ ||
|| 30 || tu || 1058.823
&lt;span style="background-color: #ffffff;"&gt;317°38'49"&lt;/span&gt; || 24/13 || 13/7, 11/6 || A# ||
|| 31 || ti || 1094.118
328°&lt;span style="background-color: #ffffff;"&gt;14'7"&lt;/span&gt; || 32/17, 17/9, 15/8 || 28/15 || A#^ = Bv ||
|| 32 || taa || 1129.412
&lt;span style="background-color: #ffffff;"&gt;338°49'15"&lt;/span&gt; || 48/25 ||  || B ||
|| 33 || da || 1164.706
349°&lt;span style="background-color: #ffffff;"&gt;24'42"&lt;/span&gt; ||  || 49/25 || B^ = A##v ||
==&lt;span style="background-color: #ffffff;"&gt;Notations&lt;/span&gt;==  
==&lt;span style="background-color: #ffffff;"&gt;Notations&lt;/span&gt;==  
The chain of fifths gives you the seven naturals, and their sharps and flats. The sharp or flat of a note is (what is commonly called) a neutral second away - the double-sharp adds up to a minor third away. This has led certain complainers, aiming to notate 17 edo (which is relatively popular), to want an extra character to raise something a small step of which. The 34 tone equal temperament, however, can be constructed from two equally spaced 17-note scales: a symbol indicating an adjustment of 1/34 up or down also serves the purpose of the previous sentence, by using two of it. This systemology of course emphasizes certain aspects of 34-edo which may not be most efficient expressions of some musical purposes: The reader can easily construct his own notation. One concern is that a system with 15 nominals for example, instead of seven, might be waste - of paper, space, brainmemory etc. if they aren't used consecutively and frequently. The system spelled out here has familiarity as an advantage or disadvantage. Tangentially, while the table uses ^ and v for "up" and "down", Kosmorosky prefers using filled in triangles because that's what I decided on years ago, and to reserve /\ and \/ as adjustments by 1/68 octave.
The chain of fifths gives you the seven naturals, and their sharps and flats. The sharp or flat of a note is (what is commonly called) a neutral second away - the double-sharp adds up to a minor third away. This has led certain complainers, aiming to notate 17 edo (which is relatively popular), to want an extra character to raise something a small step of which. The 34 tone equal temperament, however, can be constructed from two equally spaced 17-note scales: a symbol indicating an adjustment of 1/34 up or down also serves the purpose of the previous sentence, by using two of it. This systemology of course emphasizes certain aspects of 34-edo which may not be most efficient expressions of some musical purposes: The reader can easily construct his own notation. One concern is that a system with 15 nominals for example, instead of seven, might be waste - of paper, space, brainmemory etc. if they aren't used consecutively and frequently. The system spelled out here has familiarity as an advantage or disadvantage. Tangentially, while the table uses ^ and v for "up" and "down", Kosmorosky prefers using filled in triangles because that's what I decided on years ago, and to reserve /\ and \/ as adjustments by 1/68 octave.
Line 113: Line 147:
<div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;width:200%;white-space: pre-wrap ! important" class="old-revision-html">&lt;html&gt;&lt;head&gt;&lt;title&gt;34edo&lt;/title&gt;&lt;/head&gt;&lt;body&gt;&lt;!-- ws:start:WikiTextHeadingRule:0:&amp;lt;h1&amp;gt; --&gt;&lt;h1 id="toc0"&gt;&lt;!-- ws:end:WikiTextHeadingRule:0 --&gt; &lt;/h1&gt;
<div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;width:200%;white-space: pre-wrap ! important" class="old-revision-html">&lt;html&gt;&lt;head&gt;&lt;title&gt;34edo&lt;/title&gt;&lt;/head&gt;&lt;body&gt;&lt;!-- ws:start:WikiTextHeadingRule:0:&amp;lt;h1&amp;gt; --&gt;&lt;h1 id="toc0"&gt;&lt;!-- ws:end:WikiTextHeadingRule:0 --&gt; &lt;/h1&gt;
  &lt;br /&gt;
  &lt;br /&gt;
34edo divides the octave into 34 equal steps of approximately 35.29412 &lt;a class="wiki_link" href="http://xenharmonic.wikispaces.com/cent"&gt;cent&lt;/a&gt;s. 34edo contains two &lt;a class="wiki_link" href="http://xenharmonic.wikispaces.com/17edo"&gt;17edo&lt;/a&gt;'s and the half-octave tritone of 600 cents. It excels as a 5-limit system, with tuning even more accurate than &lt;a class="wiki_link" href="/31edo"&gt;31edo&lt;/a&gt;, but with a sharp fifth rather than a flat one, and supports hanson, srutal, tetracot, würschmidt and vishnu temperaments. It does less well in the 7-limit, with two mappings possible for 7/4: a flat one from the patent val, and a sharp one from the 34d val. By way of the patent val 34 supports keemun temperament, and 34d is an excellent alternative to &lt;a class="wiki_link" href="/22edo"&gt;22edo&lt;/a&gt; for 7-limit pajara temperament. In the 11-limit, 34de supports 11-limit pajaric, and in fact is quite close to the POTE tuning; it adds 4375/4374 to the commas of 11-limit pajaric. On the other hand, the 34d val supports pajara, vishnu and würschmidt, adding 4375/4374 to the commas of pajara. Among subgroup temperaments, the patent val supports semaphore on the 2.3.7 subgroup.&lt;br /&gt;
34edo divides the octave into 34 equal steps of approximately 35.29412 &lt;a class="wiki_link" href="http://xenharmonic.wikispaces.com/cent"&gt;cent&lt;/a&gt;s. 34edo contains two &lt;a class="wiki_link" href="http://xenharmonic.wikispaces.com/17edo"&gt;17edo&lt;/a&gt;'s and the half-octave tritone of 600 cents. It excels as a 5-limit system, with tuning even more accurate than &lt;a class="wiki_link" href="/31edo"&gt;31edo&lt;/a&gt;, but with a sharp fifth rather than a flat one, and supports hanson, srutal, tetracot, würschmidt and vishnu temperaments. It does less well in the 7-limit, with two mappings possible for 7/4: a flat one from the patent val, and a sharp one from the 34d val. By way of the patent val 34 supports keemun temperament, and 34d is an excellent alternative to &lt;a class="wiki_link" href="/22edo"&gt;22edo&lt;/a&gt; for 7-limit pajara temperament. In the 11-limit, 34de supports 11-limit pajaric, and in fact is quite close to the POTE tuning; it adds 4375/4374 to the commas of 11-limit pajaric. On the other hand, the 34d val supports pajara, vishnu and würschmidt, adding 4375/4374 to the commas of pajara. Among subgroup temperaments, the patent val supports semaphore on the 2.3.7 subgroup.&lt;br /&gt;
&lt;br /&gt;
&lt;br /&gt;
&lt;!-- ws:start:WikiTextHeadingRule:2:&amp;lt;h3&amp;gt; --&gt;&lt;h3 id="toc1"&gt;&lt;a name="x--Approximations to Just Intonation"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:2 --&gt;Approximations to Just Intonation&lt;/h3&gt;
&lt;!-- ws:start:WikiTextHeadingRule:2:&amp;lt;h3&amp;gt; --&gt;&lt;h3 id="toc1"&gt;&lt;a name="x--Approximations to Just Intonation"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:2 --&gt;Approximations to Just Intonation&lt;/h3&gt;
Line 120: Line 154:
&lt;em&gt;Viewed in light of Western diatonic theory, the three extra steps (of 34-et compared to 31-et) in effect widen the intervals between C and D, F and G, and A and B [that is: 6 5 3 6 5 6 3], thus making a distinction between major tones, ratio 9/8 and minor tones, ratio 10/9.&lt;/em&gt; (&lt;a class="wiki_link_ext" href="http://en.wikipedia.org/wiki/34_equal_temperament" rel="nofollow"&gt;Wikipedia&lt;/a&gt;)&lt;br /&gt;
&lt;em&gt;Viewed in light of Western diatonic theory, the three extra steps (of 34-et compared to 31-et) in effect widen the intervals between C and D, F and G, and A and B [that is: 6 5 3 6 5 6 3], thus making a distinction between major tones, ratio 9/8 and minor tones, ratio 10/9.&lt;/em&gt; (&lt;a class="wiki_link_ext" href="http://en.wikipedia.org/wiki/34_equal_temperament" rel="nofollow"&gt;Wikipedia&lt;/a&gt;)&lt;br /&gt;
&lt;br /&gt;
&lt;br /&gt;
*The sharpness of ~13 cents of 11/8 can fit somewhat with the 9/8 and 13/8 which both are about 7 cents sharp. Likewise the 20-cent sharpness or flatness of either approximation to 7/4 isn't impossible. The ability to tolerate these errors may depend on subtle natural changes in mood. &lt;a class="wiki_link" href="/68edo"&gt;68edo&lt;/a&gt;, double 34, has both these intervals in more perfect form.&lt;br /&gt;
*The sharpness of ~13 cents of 11/8 can fit somewhat with the 9/8 and 13/8 which both are about 7 cents sharp. Likewise the 16-cent flatness of the 27\34 approximation to 7/4 isn't impossible. The ability to tolerate these errors may depend on subtle natural changes in mood. &lt;a class="wiki_link" href="/68edo"&gt;68edo&lt;/a&gt;, double 34, has both these intervals in more perfect form.&lt;br /&gt;
&lt;br /&gt;
&lt;br /&gt;
&lt;!-- ws:start:WikiTextHeadingRule:4:&amp;lt;h3&amp;gt; --&gt;&lt;h3 id="toc2"&gt;&lt;a name="x--34edo and phi"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:4 --&gt;34edo and phi&lt;/h3&gt;
&lt;!-- ws:start:WikiTextHeadingRule:4:&amp;lt;h3&amp;gt; --&gt;&lt;h3 id="toc2"&gt;&lt;a name="x--34edo and phi"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:4 --&gt;34edo and phi&lt;/h3&gt;
Line 323: Line 357:
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;cents&lt;br /&gt;
         &lt;td&gt;cents&lt;br /&gt;
DMS&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;approx. ratios of&lt;br /&gt;
         &lt;td&gt;approx. ratios of&lt;br /&gt;
Line 354: Line 389:
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;35.294&lt;br /&gt;
         &lt;td&gt;35.294&lt;br /&gt;
&lt;span style="background-color: #ffffff;"&gt;10°35'18&amp;quot;&lt;/span&gt;&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;&lt;br /&gt;
         &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;&lt;br /&gt;
         &lt;td&gt;50/49&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;C ^&lt;br /&gt;
         &lt;td&gt;C ^&lt;br /&gt;
Line 368: Line 404:
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;70.588&lt;br /&gt;
         &lt;td&gt;70.588&lt;br /&gt;
&lt;span style="background-color: #ffffff;"&gt;21°10'35&amp;quot;&lt;/span&gt;&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;&lt;br /&gt;
         &lt;td&gt;25/24&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;&lt;br /&gt;
         &lt;td&gt;&lt;br /&gt;
Line 382: Line 419:
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;105.882&lt;br /&gt;
         &lt;td&gt;105.882&lt;br /&gt;
31°&lt;span style="background-color: #ffffff;"&gt;35'18&amp;quot;&lt;/span&gt;&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;17/16, 18/17, 16/15&lt;br /&gt;
         &lt;td&gt;17/16, 18/17, 16/15&lt;br /&gt;
Line 396: Line 434:
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;141.176&lt;br /&gt;
         &lt;td&gt;141.176&lt;br /&gt;
&lt;span style="background-color: #ffffff;"&gt;42°21'11&amp;quot;&lt;/span&gt;&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;13/12&lt;br /&gt;
         &lt;td&gt;13/12&lt;br /&gt;
Line 410: Line 449:
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;176.471&lt;br /&gt;
         &lt;td&gt;176.471&lt;br /&gt;
53°&lt;span style="background-color: #ffffff;"&gt;58'28&amp;quot;&lt;/span&gt;&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;10/9&lt;br /&gt;
         &lt;td&gt;10/9&lt;br /&gt;
Line 424: Line 464:
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;211.765&lt;br /&gt;
         &lt;td&gt;211.765&lt;br /&gt;
&lt;span style="background-color: #ffffff;"&gt;63°31'46&amp;quot;&lt;/span&gt;&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;9/8, 17/15&lt;br /&gt;
         &lt;td&gt;9/8, 17/15&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;8/7&lt;br /&gt;
         &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;D&lt;br /&gt;
         &lt;td&gt;D&lt;br /&gt;
Line 438: Line 479:
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;247.059&lt;br /&gt;
         &lt;td&gt;247.059&lt;br /&gt;
74°&lt;span style="background-color: #ffffff;"&gt;7'4&amp;quot;&lt;/span&gt;&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;15/13&lt;br /&gt;
         &lt;td&gt;15/13&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;&lt;br /&gt;
         &lt;td&gt;8/7&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;D^&lt;br /&gt;
         &lt;td&gt;D^&lt;br /&gt;
Line 452: Line 494:
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;282.353&lt;br /&gt;
         &lt;td&gt;282.353&lt;br /&gt;
&lt;span style="background-color: #ffffff;"&gt;84°42'21&amp;quot;&lt;/span&gt;&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;20/17, 75/64&lt;br /&gt;
         &lt;td&gt;20/17, 75/64&lt;br /&gt;
Line 466: Line 509:
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;317.647&lt;br /&gt;
         &lt;td&gt;317.647&lt;br /&gt;
95°&lt;span style="background-color: #ffffff;"&gt;17'39&amp;quot;&lt;/span&gt;&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;6/5&lt;br /&gt;
         &lt;td&gt;6/5&lt;br /&gt;
Line 480: Line 524:
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;352.941&lt;br /&gt;
         &lt;td&gt;352.941&lt;br /&gt;
&lt;span style="background-color: #ffffff;"&gt;105°52'56&amp;quot;&lt;/span&gt;&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;16/13&lt;br /&gt;
         &lt;td&gt;16/13&lt;br /&gt;
Line 494: Line 539:
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;388.235&lt;br /&gt;
         &lt;td&gt;388.235&lt;br /&gt;
116°&lt;span style="background-color: #ffffff;"&gt;28'14&amp;quot;&lt;/span&gt;&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;5/4&lt;br /&gt;
         &lt;td&gt;5/4&lt;br /&gt;
Line 508: Line 554:
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;423.529&lt;br /&gt;
         &lt;td&gt;423.529&lt;br /&gt;
&lt;span style="background-color: #ffffff;"&gt;127°3'32&amp;quot;&lt;/span&gt;&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;51/40, 32/25&lt;br /&gt;
         &lt;td&gt;51/40, 32/25&lt;br /&gt;
Line 522: Line 569:
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;458.823&lt;br /&gt;
         &lt;td&gt;458.823&lt;br /&gt;
&lt;span style="background-color: #ffffff;"&gt;137°38'49&amp;quot;&lt;/span&gt;&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;13/10, 17/13&lt;br /&gt;
         &lt;td&gt;13/10, 17/13&lt;br /&gt;
Line 536: Line 584:
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;494.118&lt;br /&gt;
         &lt;td&gt;494.118&lt;br /&gt;
&lt;span style="background-color: #ffffff;"&gt;148°14'7&amp;quot;&lt;/span&gt;&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;4/3&lt;br /&gt;
         &lt;td&gt;4/3&lt;br /&gt;
Line 550: Line 599:
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;529.412&lt;br /&gt;
         &lt;td&gt;529.412&lt;br /&gt;
158°&lt;span style="background-color: #ffffff;"&gt;49'15&amp;quot;&lt;/span&gt;&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;&lt;br /&gt;
         &lt;td&gt;&lt;br /&gt;
Line 564: Line 614:
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;564.706&lt;br /&gt;
         &lt;td&gt;564.706&lt;br /&gt;
&lt;span style="background-color: #ffffff;"&gt;169°24'42&amp;quot;&lt;/span&gt;&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;18/13&lt;br /&gt;
         &lt;td&gt;18/13&lt;br /&gt;
Line 578: Line 629:
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;600&lt;br /&gt;
         &lt;td&gt;600&lt;br /&gt;
180°&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;17/12, 24/17&lt;br /&gt;
         &lt;td&gt;17/12, 24/17&lt;br /&gt;
Line 592: Line 644:
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;635.294&lt;br /&gt;
         &lt;td&gt;635.294&lt;br /&gt;
&lt;span style="background-color: #ffffff;"&gt;190°35'18&amp;quot;&lt;/span&gt;&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;13/9&lt;br /&gt;
         &lt;td&gt;13/9&lt;br /&gt;
Line 606: Line 659:
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;670.588&lt;br /&gt;
         &lt;td&gt;670.588&lt;br /&gt;
&lt;span style="background-color: #ffffff;"&gt;201°10'35&amp;quot;&lt;/span&gt;&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;&lt;br /&gt;
         &lt;td&gt;&lt;br /&gt;
Line 620: Line 674:
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;705.882&lt;br /&gt;
         &lt;td&gt;705.882&lt;br /&gt;
&lt;span style="background-color: #ffffff;"&gt;211°45'53&amp;quot;&lt;/span&gt;&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;3/2&lt;br /&gt;
         &lt;td&gt;3/2&lt;br /&gt;
Line 634: Line 689:
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;741.176&lt;br /&gt;
         &lt;td&gt;741.176&lt;br /&gt;
&lt;span style="background-color: #ffffff;"&gt;222°21'11&amp;quot;&lt;/span&gt;&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;20/13, 26/17&lt;br /&gt;
         &lt;td&gt;20/13, 26/17&lt;br /&gt;
Line 648: Line 704:
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;776.471&lt;br /&gt;
         &lt;td&gt;776.471&lt;br /&gt;
&lt;span style="background-color: #ffffff;"&gt;233°58'28&amp;quot;&lt;/span&gt;&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;25/16, 80/51&lt;br /&gt;
         &lt;td&gt;25/16, 80/51&lt;br /&gt;
Line 662: Line 719:
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;811.765&lt;br /&gt;
         &lt;td&gt;811.765&lt;br /&gt;
&lt;span style="background-color: #ffffff;"&gt;243°31'46&amp;quot;&lt;/span&gt;&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;8/5&lt;br /&gt;
         &lt;td&gt;8/5&lt;br /&gt;
Line 676: Line 734:
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;847.059&lt;br /&gt;
         &lt;td&gt;847.059&lt;br /&gt;
&lt;span style="background-color: #ffffff;"&gt;254°7'4&amp;quot;&lt;/span&gt;&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;13/8&lt;br /&gt;
         &lt;td&gt;13/8&lt;br /&gt;
Line 690: Line 749:
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;882.353&lt;br /&gt;
         &lt;td&gt;882.353&lt;br /&gt;
&lt;span style="background-color: #ffffff;"&gt;264°42'21&amp;quot;&lt;/span&gt;&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;5/3&lt;br /&gt;
         &lt;td&gt;5/3&lt;br /&gt;
Line 704: Line 764:
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;917.647&lt;br /&gt;
         &lt;td&gt;917.647&lt;br /&gt;
&lt;span style="background-color: #ffffff;"&gt;275°17'39&amp;quot;&lt;/span&gt;&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;17/10&lt;br /&gt;
         &lt;td&gt;17/10&lt;br /&gt;
Line 718: Line 779:
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;952.941&lt;br /&gt;
         &lt;td&gt;952.941&lt;br /&gt;
285°&lt;span style="background-color: #ffffff;"&gt;52'56&amp;quot;&lt;/span&gt;&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;26/15&lt;br /&gt;
         &lt;td&gt;26/15&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;&lt;br /&gt;
         &lt;td&gt;7/4&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;A^ = Bbv =G##&lt;br /&gt;
         &lt;td&gt;A^ = Bbv =G##&lt;br /&gt;
Line 732: Line 794:
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;988.235&lt;br /&gt;
         &lt;td&gt;988.235&lt;br /&gt;
&lt;span style="background-color: #ffffff;"&gt;296°28'14&amp;quot;&lt;/span&gt;&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;16/9, 30/17&lt;br /&gt;
         &lt;td&gt;16/9, 30/17&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;7/4&lt;br /&gt;
         &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;Bb&lt;br /&gt;
         &lt;td&gt;Bb&lt;br /&gt;
Line 746: Line 809:
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;1023.529&lt;br /&gt;
         &lt;td&gt;1023.529&lt;br /&gt;
307°&lt;span style="background-color: #ffffff;"&gt;3'32&amp;quot;&lt;/span&gt;&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;9/5&lt;br /&gt;
         &lt;td&gt;9/5&lt;br /&gt;
Line 760: Line 824:
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;1058.823&lt;br /&gt;
         &lt;td&gt;1058.823&lt;br /&gt;
&lt;span style="background-color: #ffffff;"&gt;317°38'49&amp;quot;&lt;/span&gt;&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;24/13&lt;br /&gt;
         &lt;td&gt;24/13&lt;br /&gt;
Line 774: Line 839:
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;1094.118&lt;br /&gt;
         &lt;td&gt;1094.118&lt;br /&gt;
328°&lt;span style="background-color: #ffffff;"&gt;14'7&amp;quot;&lt;/span&gt;&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;32/17, 17/9, 15/8&lt;br /&gt;
         &lt;td&gt;32/17, 17/9, 15/8&lt;br /&gt;
Line 788: Line 854:
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;1129.412&lt;br /&gt;
         &lt;td&gt;1129.412&lt;br /&gt;
&lt;span style="background-color: #ffffff;"&gt;338°49'15&amp;quot;&lt;/span&gt;&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;&lt;br /&gt;
         &lt;td&gt;48/25&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;&lt;br /&gt;
         &lt;td&gt;&lt;br /&gt;
Line 802: Line 869:
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;1164.706&lt;br /&gt;
         &lt;td&gt;1164.706&lt;br /&gt;
349°&lt;span style="background-color: #ffffff;"&gt;24'42&amp;quot;&lt;/span&gt;&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;&lt;br /&gt;
         &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;&lt;br /&gt;
         &lt;td&gt;49/25&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;B^ = A##v&lt;br /&gt;
         &lt;td&gt;B^ = A##v&lt;br /&gt;