34edo: Difference between revisions

Wikispaces>JosephRuhf
**Imported revision 596940418 - Original comment: **
Wikispaces>xenwolf
**Imported revision 597692694 - Original comment: removed tel links**
Line 1: Line 1:
<h2>IMPORTED REVISION FROM WIKISPACES</h2>
<h2>IMPORTED REVISION FROM WIKISPACES</h2>
This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br>
This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br>
: This revision was by author [[User:JosephRuhf|JosephRuhf]] and made on <tt>2016-10-25 08:35:04 UTC</tt>.<br>
: This revision was by author [[User:xenwolf|xenwolf]] and made on <tt>2016-11-01 18:31:49 UTC</tt>.<br>
: The original revision id was <tt>596940418</tt>.<br>
: The original revision id was <tt>597692694</tt>.<br>
: The revision comment was: <tt></tt><br>
: The revision comment was: <tt>removed tel links</tt><br>
The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br>
The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br>
<h4>Original Wikitext content:</h4>
<h4>Original Wikitext content:</h4>
Line 21: Line 21:


=34edo and phi=  
=34edo and phi=  
As a Fibonacci number, 34edo contains a fraction of an octave which is close approximation to the irrational interval phi -- 21 degrees of 34edo, approximately 741.2 cents. Repeated iterations of this interval generates [[xenharmonic/MOSScales|Moment of Symmetry]] scales with near-phi relationships between the step sizes. As a 2.3.5.13 temperament, the 21\34 generator is an approximate 20/13, and the temperament tempers out 512/507 and [[tel:140625/140608|140625/140608]]. From the tempering of 512/507, two 16/13 neutral thirds are an approximate 3/2, defining an essentially tempered neutral triad with a sharp rather than a flat fifth. Yes. But, to be clear the harmonic ratio of phi is ~ 833 cents, and the equal divisions of octave approximating this interval closely are 13edo and [[36edo]].
As a Fibonacci number, 34edo contains a fraction of an octave which is close approximation to the irrational interval phi -- 21 degrees of 34edo, approximately 741.2 cents. Repeated iterations of this interval generates [[xenharmonic/MOSScales|Moment of Symmetry]] scales with near-phi relationships between the step sizes. As a 2.3.5.13 temperament, the 21\34 generator is an approximate 20/13, and the temperament tempers out 512/507 and 140625/140608. From the tempering of 512/507, two 16/13 neutral thirds are an approximate 3/2, defining an essentially tempered neutral triad with a sharp rather than a flat fifth. Yes. But, to be clear the harmonic ratio of phi is ~ 833 cents, and the equal divisions of octave approximating this interval closely are 13edo and [[36edo]].


=Rank two temperaments=  
=Rank two temperaments=  
Line 151: Line 151:


=Commas=  
=Commas=  
34-EDO [[tempering out|tempers out]] the following [[comma]]s. (Note: This assumes the [[val]] &lt; [[tel/34 54 79 95 118 126|34 54 79 95 118 126]] |.)
34-EDO [[tempering out|tempers out]] the following [[comma]]s. (Note: This assumes the [[val]] &lt; 34 54 79 95 118 126 |.)
||= **Comma** ||= **Monzo** ||= **Value (Cents)** ||= **Names** ||
||= **Comma** ||= **Monzo** ||= **Value (Cents)** ||= **Names** ||
||= 134217728/129140163 || | 27 -17 &gt; ||&gt; 66.765 ||= 17-comma ||
||= 134217728/129140163 || | 27 -17 &gt; ||&gt; 66.765 ||= 17-comma ||
||= 20000/19683 || | 5 -9 4 &gt; ||&gt; 27.660 ||= Minimal Diesis, Tetracot Comma ||
||= 20000/19683 || | 5 -9 4 &gt; ||&gt; 27.660 ||= Minimal Diesis, Tetracot Comma ||
||= 2048/2025 || | 11 -4 -2 &gt; ||&gt; 19.553 ||= Diaschisma ||
||= 2048/2025 || | 11 -4 -2 &gt; ||&gt; 19.553 ||= Diaschisma ||
||= [[tel:393216/390625|393216/390625]] || | 17 1 -8 &gt; ||&gt; 11.445 ||= Würschmidt comma ||
||= 393216/390625 || | 17 1 -8 &gt; ||&gt; 11.445 ||= Würschmidt comma ||
||= 15625/15552 || | -6 -5 6 &gt; ||&gt; 8.1073 ||= Kleisma, Semicomma Majeur ||
||= 15625/15552 || | -6 -5 6 &gt; ||&gt; 8.1073 ||= Kleisma, Semicomma Majeur ||
||= [[tel:1212717/1210381|1212717/1210381]] || | 23 6 -14 &gt; ||&gt; 3.338 ||= Vishnuzma, Semisuper ||
||= 1212717/1210381 || | 23 6 -14 &gt; ||&gt; 3.338 ||= Vishnuzma, Semisuper ||
||= 1029/1000 || | -3 1 -3 3 &gt; ||&gt; 49.492 ||= Keega ||
||= 1029/1000 || | -3 1 -3 3 &gt; ||&gt; 49.492 ||= Keega ||
||= [[50_49|50/49]] || | 1 0 2 -2 &gt; ||&gt; 34.976 ||= Fifty forty-nine ||
||= [[50_49|50/49]] || | 1 0 2 -2 &gt; ||&gt; 34.976 ||= Fifty forty-nine ||
Line 191: Line 191:
&lt;br /&gt;
&lt;br /&gt;
&lt;!-- ws:start:WikiTextHeadingRule:2:&amp;lt;h1&amp;gt; --&gt;&lt;h1 id="toc1"&gt;&lt;a name="x34edo and phi"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:2 --&gt;34edo and phi&lt;/h1&gt;
&lt;!-- ws:start:WikiTextHeadingRule:2:&amp;lt;h1&amp;gt; --&gt;&lt;h1 id="toc1"&gt;&lt;a name="x34edo and phi"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:2 --&gt;34edo and phi&lt;/h1&gt;
  As a Fibonacci number, 34edo contains a fraction of an octave which is close approximation to the irrational interval phi -- 21 degrees of 34edo, approximately 741.2 cents. Repeated iterations of this interval generates &lt;a class="wiki_link" href="http://xenharmonic.wikispaces.com/MOSScales"&gt;Moment of Symmetry&lt;/a&gt; scales with near-phi relationships between the step sizes. As a 2.3.5.13 temperament, the 21\34 generator is an approximate 20/13, and the temperament tempers out 512/507 and [[tel:140625/140608|140625/140608]]. From the tempering of 512/507, two 16/13 neutral thirds are an approximate 3/2, defining an essentially tempered neutral triad with a sharp rather than a flat fifth. Yes. But, to be clear the harmonic ratio of phi is ~ 833 cents, and the equal divisions of octave approximating this interval closely are 13edo and &lt;a class="wiki_link" href="/36edo"&gt;36edo&lt;/a&gt;.&lt;br /&gt;
  As a Fibonacci number, 34edo contains a fraction of an octave which is close approximation to the irrational interval phi -- 21 degrees of 34edo, approximately 741.2 cents. Repeated iterations of this interval generates &lt;a class="wiki_link" href="http://xenharmonic.wikispaces.com/MOSScales"&gt;Moment of Symmetry&lt;/a&gt; scales with near-phi relationships between the step sizes. As a 2.3.5.13 temperament, the 21\34 generator is an approximate 20/13, and the temperament tempers out 512/507 and 140625/140608. From the tempering of 512/507, two 16/13 neutral thirds are an approximate 3/2, defining an essentially tempered neutral triad with a sharp rather than a flat fifth. Yes. But, to be clear the harmonic ratio of phi is ~ 833 cents, and the equal divisions of octave approximating this interval closely are 13edo and &lt;a class="wiki_link" href="/36edo"&gt;36edo&lt;/a&gt;.&lt;br /&gt;
&lt;br /&gt;
&lt;br /&gt;
&lt;!-- ws:start:WikiTextHeadingRule:4:&amp;lt;h1&amp;gt; --&gt;&lt;h1 id="toc2"&gt;&lt;a name="Rank two temperaments"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:4 --&gt;Rank two temperaments&lt;/h1&gt;
&lt;!-- ws:start:WikiTextHeadingRule:4:&amp;lt;h1&amp;gt; --&gt;&lt;h1 id="toc2"&gt;&lt;a name="Rank two temperaments"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:4 --&gt;Rank two temperaments&lt;/h1&gt;
Line 1,078: Line 1,078:
&lt;br /&gt;
&lt;br /&gt;
&lt;!-- ws:start:WikiTextHeadingRule:12:&amp;lt;h1&amp;gt; --&gt;&lt;h1 id="toc6"&gt;&lt;a name="Commas"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:12 --&gt;Commas&lt;/h1&gt;
&lt;!-- ws:start:WikiTextHeadingRule:12:&amp;lt;h1&amp;gt; --&gt;&lt;h1 id="toc6"&gt;&lt;a name="Commas"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:12 --&gt;Commas&lt;/h1&gt;
  34-EDO &lt;a class="wiki_link" href="/tempering%20out"&gt;tempers out&lt;/a&gt; the following &lt;a class="wiki_link" href="/comma"&gt;comma&lt;/a&gt;s. (Note: This assumes the &lt;a class="wiki_link" href="/val"&gt;val&lt;/a&gt; &amp;lt; &lt;a class="wiki_link" href="http://tel.wikispaces.com/34%2054%2079%2095%20118%20126"&gt;34 54 79 95 118 126&lt;/a&gt; |.)&lt;br /&gt;
  34-EDO &lt;a class="wiki_link" href="/tempering%20out"&gt;tempers out&lt;/a&gt; the following &lt;a class="wiki_link" href="/comma"&gt;comma&lt;/a&gt;s. (Note: This assumes the &lt;a class="wiki_link" href="/val"&gt;val&lt;/a&gt; &amp;lt; 34 54 79 95 118 126 |.)&lt;br /&gt;




Line 1,123: Line 1,123:
     &lt;/tr&gt;
     &lt;/tr&gt;
     &lt;tr&gt;
     &lt;tr&gt;
         &lt;td style="text-align: center;"&gt;[[tel:393216/390625|393216/390625]]&lt;br /&gt;
         &lt;td style="text-align: center;"&gt;393216/390625&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;| 17 1 -8 &amp;gt;&lt;br /&gt;
         &lt;td&gt;| 17 1 -8 &amp;gt;&lt;br /&gt;
Line 1,143: Line 1,143:
     &lt;/tr&gt;
     &lt;/tr&gt;
     &lt;tr&gt;
     &lt;tr&gt;
         &lt;td style="text-align: center;"&gt;[[tel:1212717/1210381|1212717/1210381]]&lt;br /&gt;
         &lt;td style="text-align: center;"&gt;1212717/1210381&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;| 23 6 -14 &amp;gt;&lt;br /&gt;
         &lt;td&gt;| 23 6 -14 &amp;gt;&lt;br /&gt;