33edo: Difference between revisions

Wikispaces>genewardsmith
**Imported revision 243299921 - Original comment: **
Wikispaces>genewardsmith
**Imported revision 243316657 - Original comment: **
Line 1: Line 1:
<h2>IMPORTED REVISION FROM WIKISPACES</h2>
<h2>IMPORTED REVISION FROM WIKISPACES</h2>
This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br>
This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br>
: This revision was by author [[User:genewardsmith|genewardsmith]] and made on <tt>2011-07-28 17:07:27 UTC</tt>.<br>
: This revision was by author [[User:genewardsmith|genewardsmith]] and made on <tt>2011-07-28 19:29:38 UTC</tt>.<br>
: The original revision id was <tt>243299921</tt>.<br>
: The original revision id was <tt>243316657</tt>.<br>
: The revision comment was: <tt></tt><br>
: The revision comment was: <tt></tt><br>
The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br>
The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br>
Line 13: Line 13:


0: 00.000 1/1
0: 00.000 1/1
1: 36.364 cents
1: 36.364 48/47
2: 72.727 cents
2: 72.727 24/23
3: 109.091 17/16
3: 109.091 16/15 17/16
4: 145.455 cents
4: 145.455 12/11
5: 181.818 10/9
5: 181.818 10/9
6: 218.182 8/7 9/8
6: 218.182 8/7 9/8 17/15
7: 254.545 37/32
7: 254.545 7/6 22/19 37/32
8: 290.909 19/16
8: 290.909 13/1 19/16
9: 327.273 6/5
9: 327.273 6/5
10: 363.636 16/13
10: 363.636 16/13 21/17
11: 400.000 4/3
11: 400.000 5/4
12: 436.364 9/7
12: 436.364 9/7
13: 472.727 21/16
13: 472.727 21/16
Line 29: Line 29:
15: 545.455 11/8
15: 545.455 11/8
16: 581.818 7/5
16: 581.818 7/5
17: 618.182 23/16
17: 618.182 10/7 23/16
18: 654.545 cents
18: 654.545 19/13 16/11
19: 690.909 3/2
19: 690.909 3/2
20: 727.273 cents
20: 727.273 32/21
21: 763.636 cents
21: 763.636 14/9
22: 800.000 cents
22: 800.000 19/12 8/5
23: 836.364 13/8
23: 836.364 13/8
24: 872.727 cents
24: 872.727 5/3
25: 909.091 cents
25: 909.091 22/13
26: 945.455 7/4
26: 945.455 19/11 12/7
27: 981.818 7/4
27: 981.818 7/4
28: 1018.182 9/5
28: 1018.182 9/5
29: 1054.545 cents
29: 1054.545 11/6
30: 1090.909 15/8
30: 1090.909 15/8
31: 1127.273 cents
31: 1127.273 23/12
32: 1163.636 cents
32: 1163.636 47/24
33: 1200.000 cents</pre></div>
33: 1200.000 2/1</pre></div>
<h4>Original HTML content:</h4>
<h4>Original HTML content:</h4>
<div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;width:200%;white-space: pre-wrap ! important" class="old-revision-html">&lt;html&gt;&lt;head&gt;&lt;title&gt;33edo&lt;/title&gt;&lt;/head&gt;&lt;body&gt;The &lt;em&gt;33 equal division&lt;/em&gt; divides the &lt;a class="wiki_link" href="/octave"&gt;octave&lt;/a&gt; into 33 equal parts of 36.3636 &lt;a class="wiki_link" href="/cent"&gt;cent&lt;/a&gt;s each. It is not especially good at representing all rational intervals in the &lt;a class="wiki_link" href="/7-limit"&gt;7-limit&lt;/a&gt;, but it does very well on the 7-limit &lt;a class="wiki_link" href="/k%2AN%20subgroups"&gt;3*33 subgroup&lt;/a&gt; 2.27.15.21. On this subgroup it tunes things to the same tuning as &lt;a class="wiki_link" href="/99edo"&gt;99edo&lt;/a&gt;, and as a subgroup patent val it tempers out the same commas. The 99 equal temperaments hemififths, amity, parakleismic, hemiwuerschmidt, ennealimmal and hendecatonic can be reduced to this subgroup and give various possibilities for MOS scales, etc.&lt;br /&gt;
<div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;width:200%;white-space: pre-wrap ! important" class="old-revision-html">&lt;html&gt;&lt;head&gt;&lt;title&gt;33edo&lt;/title&gt;&lt;/head&gt;&lt;body&gt;The &lt;em&gt;33 equal division&lt;/em&gt; divides the &lt;a class="wiki_link" href="/octave"&gt;octave&lt;/a&gt; into 33 equal parts of 36.3636 &lt;a class="wiki_link" href="/cent"&gt;cent&lt;/a&gt;s each. It is not especially good at representing all rational intervals in the &lt;a class="wiki_link" href="/7-limit"&gt;7-limit&lt;/a&gt;, but it does very well on the 7-limit &lt;a class="wiki_link" href="/k%2AN%20subgroups"&gt;3*33 subgroup&lt;/a&gt; 2.27.15.21. On this subgroup it tunes things to the same tuning as &lt;a class="wiki_link" href="/99edo"&gt;99edo&lt;/a&gt;, and as a subgroup patent val it tempers out the same commas. The 99 equal temperaments hemififths, amity, parakleismic, hemiwuerschmidt, ennealimmal and hendecatonic can be reduced to this subgroup and give various possibilities for MOS scales, etc.&lt;br /&gt;
Line 54: Line 54:
&lt;br /&gt;
&lt;br /&gt;
0: 00.000 1/1&lt;br /&gt;
0: 00.000 1/1&lt;br /&gt;
1: 36.364 cents&lt;br /&gt;
1: 36.364 48/47&lt;br /&gt;
2: 72.727 cents&lt;br /&gt;
2: 72.727 24/23&lt;br /&gt;
3: 109.091 17/16&lt;br /&gt;
3: 109.091 16/15 17/16&lt;br /&gt;
4: 145.455 cents&lt;br /&gt;
4: 145.455 12/11&lt;br /&gt;
5: 181.818 10/9&lt;br /&gt;
5: 181.818 10/9&lt;br /&gt;
6: 218.182 8/7 9/8&lt;br /&gt;
6: 218.182 8/7 9/8 17/15&lt;br /&gt;
7: 254.545 37/32&lt;br /&gt;
7: 254.545 7/6 22/19 37/32&lt;br /&gt;
8: 290.909 19/16&lt;br /&gt;
8: 290.909 13/1 19/16&lt;br /&gt;
9: 327.273 6/5&lt;br /&gt;
9: 327.273 6/5&lt;br /&gt;
10: 363.636 16/13&lt;br /&gt;
10: 363.636 16/13 21/17&lt;br /&gt;
11: 400.000 4/3&lt;br /&gt;
11: 400.000 5/4&lt;br /&gt;
12: 436.364 9/7&lt;br /&gt;
12: 436.364 9/7&lt;br /&gt;
13: 472.727 21/16&lt;br /&gt;
13: 472.727 21/16&lt;br /&gt;
Line 70: Line 70:
15: 545.455 11/8&lt;br /&gt;
15: 545.455 11/8&lt;br /&gt;
16: 581.818 7/5&lt;br /&gt;
16: 581.818 7/5&lt;br /&gt;
17: 618.182 23/16&lt;br /&gt;
17: 618.182 10/7 23/16&lt;br /&gt;
18: 654.545 cents&lt;br /&gt;
18: 654.545 19/13 16/11 &lt;br /&gt;
19: 690.909 3/2&lt;br /&gt;
19: 690.909 3/2&lt;br /&gt;
20: 727.273 cents&lt;br /&gt;
20: 727.273 32/21&lt;br /&gt;
21: 763.636 cents&lt;br /&gt;
21: 763.636 14/9&lt;br /&gt;
22: 800.000 cents&lt;br /&gt;
22: 800.000 19/12 8/5&lt;br /&gt;
23: 836.364 13/8&lt;br /&gt;
23: 836.364 13/8&lt;br /&gt;
24: 872.727 cents&lt;br /&gt;
24: 872.727 5/3&lt;br /&gt;
25: 909.091 cents&lt;br /&gt;
25: 909.091 22/13&lt;br /&gt;
26: 945.455 7/4&lt;br /&gt;
26: 945.455 19/11 12/7&lt;br /&gt;
27: 981.818 7/4&lt;br /&gt;
27: 981.818 7/4&lt;br /&gt;
28: 1018.182 9/5&lt;br /&gt;
28: 1018.182 9/5&lt;br /&gt;
29: 1054.545 cents&lt;br /&gt;
29: 1054.545 11/6&lt;br /&gt;
30: 1090.909 15/8&lt;br /&gt;
30: 1090.909 15/8&lt;br /&gt;
31: 1127.273 cents&lt;br /&gt;
31: 1127.273 23/12&lt;br /&gt;
32: 1163.636 cents&lt;br /&gt;
32: 1163.636 47/24&lt;br /&gt;
33: 1200.000 cents&lt;/body&gt;&lt;/html&gt;</pre></div>
33: 1200.000 2/1&lt;/body&gt;&lt;/html&gt;</pre></div>