Kite's thoughts on pergens: Difference between revisions
add "See also: Rank-2 temperaments by mapping of 3" at top |
|||
Line 4,192: | Line 4,192: | ||
[[File:pergens_2.png|alt=pergens 2.png|704x760px|pergens 2.png]] | [[File:pergens_2.png|alt=pergens 2.png|704x760px|pergens 2.png]] | ||
=== | ===PergenLister=== | ||
PergenLister lists out thousands of rank-2 pergens, and suggests periods, generators and enharmonics for each one. Alternate enharmonics are not listed, but single-pair notation for false-double pergens is. It can also list only those pergens supported by a specific edo or edo pair. | |||
http://www.tallkite.com/ | http://www.tallkite.com/apps/pergenLister.html (written in Jesusonic, runs inside Reaper or ReaJS) | ||
The first section (PERGEN and Per/Gen cents) describes each pergen without regard to notational issues. The period and generator's cents are given, assuming a 5th of 700¢ + c. The generator is reduced, e.g. (P8/2, P5) has a generator of 100¢ + c, not 700¢ + c. The next two sections show a possible notation for P and G. The last section shows the unreduced pergen, and for false doubles, a possible single-pair notation. Horizontal lines group the pergens into blocks (half-splits, third-splits, etc). Red indicates problems. Generators of 50¢ or less are in red. Enharmonics of a 3rd or more are in red. | The first section (PERGEN and Per/Gen cents) describes each pergen without regard to notational issues. The period and generator's cents are given, assuming a 5th of 700¢ + c. The generator is reduced, e.g. (P8/2, P5) has a generator of 100¢ + c, not 700¢ + c. The next two sections show a possible notation for P and G. The last section shows the unreduced pergen, and for false doubles, a possible single-pair notation. Horizontal lines group the pergens into blocks (half-splits, third-splits, etc). Red indicates problems. Generators of 50¢ or less are in red. Enharmonics of a 3rd or more are in red. | ||
Line 4,234: | Line 4,234: | ||
==Various proofs (unfinished)== | ==Various proofs (unfinished)== | ||
Although not yet rigorously proven, the two false-double tests have been empirically verified by | Although not yet rigorously proven, the two false-double tests have been empirically verified by pergenLister. | ||
The interval P8/2 has a "ratio" of the square root of 2, which equals 2<span style="vertical-align: super;">1/2</span>, and its monzo can be written with fractions as (1/2, 0). In general, the pergen (P8/m, (a,b)/n) implies P = (1/m, 0) and G = (a/n, b/n). These equations make the '''pergen matrix''' [(1/m 0) (a/n b/n)], which is P and G in terms of P8 and P12. Its inverse is [(m 0) (-am/b n/b)], which is P8 and P12 in terms of P and G, i.e. the square mapping. | The interval P8/2 has a "ratio" of the square root of 2, which equals 2<span style="vertical-align: super;">1/2</span>, and its monzo can be written with fractions as (1/2, 0). In general, the pergen (P8/m, (a,b)/n) implies P = (1/m, 0) and G = (a/n, b/n). These equations make the '''pergen matrix''' [(1/m 0) (a/n b/n)], which is P and G in terms of P8 and P12. Its inverse is [(m 0) (-am/b n/b)], which is P8 and P12 in terms of P and G, i.e. the square mapping. |