3L 4s: Difference between revisions

Wikispaces>JosephRuhf
**Imported revision 565160127 - Original comment: **
Wikispaces>FREEZE
No edit summary
Line 1: Line 1:
<h2>IMPORTED REVISION FROM WIKISPACES</h2>
=3L 4s - "mosh"=
This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br>
: This revision was by author [[User:JosephRuhf|JosephRuhf]] and made on <tt>2015-11-04 12:15:19 UTC</tt>.<br>
: The original revision id was <tt>565160127</tt>.<br>
: The revision comment was: <tt></tt><br>
The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br>
<h4>Original Wikitext content:</h4>
<div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;white-space: pre-wrap ! important" class="old-revision-html">=3L 4s - "mosh"=  


MOS scales of this form are built from a generator that falls between 1\3 (one degree of [[3edo]] - 400 cents) and 2\7 (two degrees of [[7edo]] - 343 cents.
MOS scales of this form are built from a generator that falls between 1\3 (one degree of [[3edo|3edo]] - 400 cents) and 2\7 (two degrees of [[7edo|7edo]] - 343 cents.


It has the form s L s L s L s and its various "modes" (with [[Modal UDP Notation]] and nicknames coined by [[Andrew Heathwaite]]) are:
It has the form s L s L s L s and its various "modes" (with [[Modal_UDP_Notation|Modal UDP Notation]] and nicknames coined by [[Andrew_Heathwaite|Andrew Heathwaite]]) are:


||= **Mode** ||= **UDP** ||= **Nickname** ||
{| class="wikitable"
|| s L s L s L s ||= 3|3 || bish ||
|-
|| L s L s L s s ||= 6|0 || dril ||
| style="text-align:center;" | '''Mode'''
|| s L s L s s L ||= 2|4 || fish ||
| style="text-align:center;" | '''UDP'''
|| L s L s s L s ||= 5|1 || gil ||
| style="text-align:center;" | '''Nickname'''
|| s L s s L s L ||= 1|5 || jwl ||
|-
|| L s s L s L s ||= 4|2 || kleeth ||
| | s L s L s L s
|| s s L s L s L ||= 0|6 || led ||
| style="text-align:center;" | 3|3
The two notable harmonic entropy minima with this pattern are neutral third scales ("dicot" / "hemififth" / "mohajira") where two generators make a 3/2, and [[Magic family|magic]], where the generator is a 5/4 but five of them make a 3/1.
| | bish
||~  ||~  ||~  ||~ g ||~ 2g ||~ 3g ||~ 4g (-1200) ||~ comments ||
|-
|| 1\3 ||  ||  || 400.000 || 800.000 || 1200.000 || 400.000 ||=  ||
| | L s L s L s s
||  || 15\46 ||  || 391.304 || 782.609 || 1173.913 || 365.217 ||=  ||
| style="text-align:center;" | 6|0
||  || 14\43 ||  || 390.698 || 781.395 || 1172.093 || 362.791 ||=  ||
| | dril
||  || 13\40 ||  || 390.000 || 780.000 || 1170.000 || 360.000 ||=  ||
|-
||  || 12\37 ||  || 389.189 || 778.378 || 1167.568 || 356.757 ||=  ||
| | s L s L s s L
||  || 11\34 ||  || 388.235 || 776.471 || 1164.706 || 352.941 ||=  ||
| style="text-align:center;" | 2|4
||  || 10\31 ||  || 387.097 || 774.194 || 1161.290 || 348.387 ||= &lt;span style="display: block; text-align: center;"&gt;[[xenharmonic/Würschmidt family|Würschmidt]] is around here&lt;/span&gt; ||
| | fish
||  ||  || 19\59 || 386.441 || 772.881 || 1159.322 || 345.763 ||=  ||
|-
||  || 9\28 ||  || 385.714 || 771.429 || 1157.143 || 342.857 ||=  ||
| | L s L s s L s
||  || 8\25 ||  || 384.000 || 768.000 || 1152.000 || 336.000 ||=  ||
| style="text-align:center;" | 5|1
||  ||  || 23\72 || 383.333 || 766.667 || 1150.000 || 333.333 ||=  ||
| | gil
||  ||  || 15\47 || 382.988 || 765.957 || 1148.936 || 331.915 ||=  ||
|-
||  || 7\22 ||  || 381.818 || 763.636 || 1145.455 || 327.273 ||=  ||
| | s L s s L s L
||  ||  || 13\41 || 380.488 || 760.976 || 1141.463 || 321.951 ||= &lt;span style="display: block; text-align: center;"&gt;Magic is around here&lt;/span&gt; ||
| style="text-align:center;" | 1|5
||  ||  || 19\60 || 380.000 || 760.000 || 1140.000 || 320.000 ||=  ||
| | jwl
||  ||  || 25\79 || 379.747 || 759.494 || 1139.2405 || 318.987 ||=  ||
|-
||  || 6\19 ||  || 378.947 || 757.895 || 1136.842 || 315.789 ||=  ||
| | L s s L s L s
||  ||  || 11\35 || 377.143 || 754.286 || 1131.429 || 308.571 ||=  ||
| style="text-align:center;" | 4|2
||  ||  || 16\51 || 376.471 || 752.941 || 1129.412 || 305.882 ||=  ||
| | kleeth
||  || 5\16 ||  || 375.000 || 750.000 || 1125.000 || 300.000 ||= &lt;span style="display: block; text-align: center;"&gt;L/s = 4&lt;/span&gt; ||
|-
||  ||  || 24\77 || 374.026 || 748.052 || 1122.078 || 296.104 ||=  ||
| | s s L s L s L
||   ||  || 19\61 || 373.7705 || 747.541 || 1121.3115 || 295.082 ||=  ||
| style="text-align:center;" | 0|6
||  ||  || 14\45 || 373.333 || 746.667 || 1120.000 || 293.333 ||=  ||
| | led
||  ||  || 9\29 || 372.414 || 744.828 || 1117.241 || 289.655 ||=  ||
|}
||  ||  || 13\42 || 371.429 || 742.857 || 1114.286 || 285.714 ||=  ||
The two notable harmonic entropy minima with this pattern are neutral third scales ("dicot" / "hemififth" / "mohajira") where two generators make a 3/2, and [[Magic_family|magic]], where the generator is a 5/4 but five of them make a 3/1.
||  ||  || 17\55 || 370.909 || 741.818 || 1112.727 || 283.636 ||=  ||
||  ||  ||  || 370.204 || 740.409 || 1110.613 || 280.817 ||= &lt;span style="display: block; text-align: center;"&gt;L/s = pi&lt;/span&gt; ||
||   || 4\13 ||  || 369.231 || 738.462 || 1107.692 || 276.923 ||= &lt;span style="display: block; text-align: center;"&gt;L/s = 3&lt;/span&gt; ||
||  ||  || 23\75 || 368.000 || 736.000 || 1104.000 || 272.000 ||= &lt;span style="display: block; text-align: center;"&gt;
&lt;/span&gt; ||
||   ||  || 19\62 || 367.742 || 735.484 || 1103.226 || 270.968 ||  ||
||  ||  || 15\49 || 367.347 || 734.694 || 1102.041 || 269.388 ||=  ||
||   ||  ||  || 367.091 || 734.183 || 1101.274 || 268.365 ||= L/s = e ||
||  ||  || 11\36 || 366.667 || 733.333 || 1100.000 || 266.667 ||=  ||
||  ||  ||  || 366.256 || 732.513 || 1198.77 || 265.026 ||  ||
||  ||  || 7\23 || 365.217 || 730.435 || 1095.652 || 260.870 ||= &lt;span style="display: block; text-align: center;"&gt;Modi Sephiratorum (Kosmorsky)&lt;/span&gt; ||
||   ||  || 17\56 || 364.286 || 728.571 || 1092.857 || 257.143 ||=  ||
||  ||  || 10\33 || 363.636 || 727.272 || 1090.909 || 254.545 ||=  ||
||   ||  || 13\43 || 362.791 || 725.581 || 1088.372 || 251.163 ||=  ||
||  ||  || 16\53 || 362.264 || 724.528 || 1086.7925 || 249.057 ||=  ||
||  ||  || 19\63 || 361.905 || 723.8095 || 1085.714 || 247.619 ||=  ||
||  || 3\10 ||  || 360.000 || 720.000 || 1080.000 || 240.000 ||= &lt;span style="display: block; text-align: center;"&gt;Boundary of propriety&lt;/span&gt;&lt;span style="display: block; text-align: center;"&gt;(generators smaller than this are proper)&lt;/span&gt; ||
||   ||  || 38\127 || 359.055 || 718.110 || 1077.165 || 236.2205 ||=  ||
||  ||  || 35\117 || 358.974 || 717.949 || 1076.923 || 235.898 ||=  ||
||   ||  || 32\107 || 358.8785 || 717.757 || 1076.6355 || 235.514 ||=  ||
||  ||  || 29\97 || 358.763 || 717.526 || 1076.289 || 235.0515 ||=  ||
||  ||  || 26\87 || 358.621 || 717.241 || 1075.862 || 234.483 ||=  ||
||  ||  || 23\77 || 358.442 || 716.883 || 1075.325 || 233.767 ||=  ||
||  ||  || 20\67 || 358.209 || 716.418 || 1074.627 || 232.836 ||=  ||
||  ||  || 17\57 || 357.895 || 715.7895 || 1073.684 || 231.579 ||=  ||
||  ||  || 14\47 || 357.447 || 714.894 || 1072.340 || 229.787 ||=  ||
||  ||  || 11\37 || 356.757 || 713.514 || 1070.270 || 227.027 ||=  ||
||  ||  ||  || 356.5035 || 713.007 || 1069.511 || 226.014 ||  ||
||  ||  || 8\27 || 355.556 || 711.111 || 1066.667 || 222.222 ||= &lt;span style="display: block; text-align: center;"&gt;Beatles is around here&lt;/span&gt; ||
||   ||   ||  || 354.930 || 709.859 || 1064.789 || 219.718 ||= &lt;span style="display: block; text-align: center;"&gt;Golden neutral thirds scale&lt;/span&gt; ||
||   ||  || 21\71 || 354.783 || 709.565 || 1064.348 || 219.13 ||=  ||
||  ||  || 13\44 || 354.5455 || 709.091 || 1063.636 || 218.182 ||=  ||
||   ||  ||  || 354.088 || 708.177 || 1062.266 || 216.354 ||  ||
||  || 5\17 ||  || 352.941 || 705.882 || 1058.824 || 211.765 ||= &lt;span style="display: block; text-align: center;"&gt;Optimum rank range (L/s=3/2)&lt;/span&gt; ||
||  ||  || 12\41 || 351.220 || 702.439 || 1053.659 || 204.878 ||= &lt;span style="display: block; text-align: center;"&gt;2.3.11 neutral thirds scale is around here&lt;/span&gt; ||
||   || 7\24 ||  || 350.000 || 700.000 || 1050.000 || 200.000 ||=  ||
||  ||  || 16\55 || 349.091 || 698.182 || 1047.273 || 196.364 ||  ||
||  || 9\31 ||  || 348.387 || 696.774 || 1045.161 || 193.548 ||= &lt;span style="display: block; text-align: center;"&gt;Mohajira/dicot is around here&lt;/span&gt; ||
||  || 11\38 ||  || 347.368 || 694.737 || 1042.105 || 189.474 ||  ||
|| 2\7 ||  ||  || 342.857 || 685.714 || 1028.571 || 171.429 ||=  ||


3\10 on this chart represents a dividing line between "neutral third scales" on the bottom (eg. [[17edo neutral scale]]), and something else I don't have a name for yet on the top, with [[10edo]] standing in between. (What do you call this region, dear reader?) Of course, magic is in the top half, but it's a pretty specific scale and doesn't describe the whole range. MOS-wise, the neutral third scales, after three more generations, make MOS [[7L 3s]] ("unfair mosh"); the other scales make MOS [[3L 7s]] ("fair mosh").
{| class="wikitable"
|-
! |
! |
! |
! | g
! | 2g
! | 3g
! | 4g (-1200)
! | comments
|-
| | 1\3
| |
| |
| | 400.000
| | 800.000
| | 1200.000
| | 400.000
| style="text-align:center;" |
|-
| |
| | 15\46
| |
| | 391.304
| | 782.609
| | 1173.913
| | 365.217
| style="text-align:center;" |
|-
| |
| | 14\43
| |
| | 390.698
| | 781.395
| | 1172.093
| | 362.791
| style="text-align:center;" |
|-
| |
| | 13\40
| |
| | 390.000
| | 780.000
| | 1170.000
| | 360.000
| style="text-align:center;" |
|-
| |
| | 12\37
| |
| | 389.189
| | 778.378
| | 1167.568
| | 356.757
| style="text-align:center;" |
|-
| |
| | 11\34
| |
| | 388.235
| | 776.471
| | 1164.706
| | 352.941
| style="text-align:center;" |
|-
| |
| | 10\31
| |
| | 387.097
| | 774.194
| | 1161.290
| | 348.387
| style="text-align:center;" | <span style="display: block; text-align: center;">[[Würschmidt_family|Würschmidt]] is around here</span>
|-
| |
| |
| | 19\59
| | 386.441
| | 772.881
| | 1159.322
| | 345.763
| style="text-align:center;" |
|-
| |
| | 9\28
| |
| | 385.714
| | 771.429
| | 1157.143
| | 342.857
| style="text-align:center;" |
|-
| |
| | 8\25
| |
| | 384.000
| | 768.000
| | 1152.000
| | 336.000
| style="text-align:center;" |
|-
| |
| |
| | 23\72
| | 383.333
| | 766.667
| | 1150.000
| | 333.333
| style="text-align:center;" |
|-
| |
| |
| | 15\47
| | 382.988
| | 765.957
| | 1148.936
| | 331.915
| style="text-align:center;" |
|-
| |
| | 7\22
| |
| | 381.818
| | 763.636
| | 1145.455
| | 327.273
| style="text-align:center;" |
|-
| |
| |
| | 13\41
| | 380.488
| | 760.976
| | 1141.463
| | 321.951
| style="text-align:center;" | <span style="display: block; text-align: center;">Magic is around here</span>
|-
| |
| |
| | 19\60
| | 380.000
| | 760.000
| | 1140.000
| | 320.000
| style="text-align:center;" |
|-
| |
| |
| | 25\79
| | 379.747
| | 759.494
| | 1139.2405
| | 318.987
| style="text-align:center;" |
|-
| |
| | 6\19
| |
| | 378.947
| | 757.895
| | 1136.842
| | 315.789
| style="text-align:center;" |
|-
| |
| |
| | 11\35
| | 377.143
| | 754.286
| | 1131.429
| | 308.571
| style="text-align:center;" |
|-
| |
| |
| | 16\51
| | 376.471
| | 752.941
| | 1129.412
| | 305.882
| style="text-align:center;" |
|-
| |
| | 5\16
| |
| | 375.000
| | 750.000
| | 1125.000
| | 300.000
| style="text-align:center;" | <span style="display: block; text-align: center;">L/s = 4</span>
|-
| |
| |
| | 24\77
| | 374.026
| | 748.052
| | 1122.078
| | 296.104
| style="text-align:center;" |
|-
| |
| |
| | 19\61
| | 373.7705
| | 747.541
| | 1121.3115
| | 295.082
| style="text-align:center;" |
|-
| |
| |
| | 14\45
| | 373.333
| | 746.667
| | 1120.000
| | 293.333
| style="text-align:center;" |
|-
| |
| |
| | 9\29
| | 372.414
| | 744.828
| | 1117.241
| | 289.655
| style="text-align:center;" |
|-
| |
| |
| | 13\42
| | 371.429
| | 742.857
| | 1114.286
| | 285.714
| style="text-align:center;" |
|-
| |
| |
| | 17\55
| | 370.909
| | 741.818
| | 1112.727
| | 283.636
| style="text-align:center;" |
|-
| |
| |
| |
| | 370.204
| | 740.409
| | 1110.613
| | 280.817
| style="text-align:center;" | <span style="display: block; text-align: center;">L/s = pi</span>
|-
| |
| | 4\13
| |
| | 369.231
| | 738.462
| | 1107.692
| | 276.923
| style="text-align:center;" | <span style="display: block; text-align: center;">L/s = 3</span>
|-
| |
| |
| | 23\75
| | 368.000
| | 736.000
| | 1104.000
| | 272.000
| style="text-align:center;" | <span style="display: block; text-align: center;">


In "neutral third scale territory," the generators are all "neutral thirds," and two of them make an approximation of the "perfect fifth." Additionally, the L of the scale is somewhere around a "whole tone" and the s of the scale is somewhere around a "neutral tone".
</span>
|-
| |
| |
| | 19\62
| | 367.742
| | 735.484
| | 1103.226
| | 270.968
| |
|-
| |
| |
| | 15\49
| | 367.347
| | 734.694
| | 1102.041
| | 269.388
| style="text-align:center;" |
|-
| |
| |
| |
| | 367.091
| | 734.183
| | 1101.274
| | 268.365
| style="text-align:center;" | L/s = e
|-
| |
| |
| | 11\36
| | 366.667
| | 733.333
| | 1100.000
| | 266.667
| style="text-align:center;" |
|-
| |
| |
| |
| | 366.256
| | 732.513
| | 1198.77
| | 265.026
| |
|-
| |
| |
| | 7\23
| | 365.217
| | 730.435
| | 1095.652
| | 260.870
| style="text-align:center;" | <span style="display: block; text-align: center;">Modi Sephiratorum (Kosmorsky)</span>
|-
| |
| |
| | 17\56
| | 364.286
| | 728.571
| | 1092.857
| | 257.143
| style="text-align:center;" |
|-
| |
| |
| | 10\33
| | 363.636
| | 727.272
| | 1090.909
| | 254.545
| style="text-align:center;" |
|-
| |
| |
| | 13\43
| | 362.791
| | 725.581
| | 1088.372
| | 251.163
| style="text-align:center;" |
|-
| |
| |
| | 16\53
| | 362.264
| | 724.528
| | 1086.7925
| | 249.057
| style="text-align:center;" |
|-
| |
| |
| | 19\63
| | 361.905
| | 723.8095
| | 1085.714
| | 247.619
| style="text-align:center;" |
|-
| |
| | 3\10
| |
| | 360.000
| | 720.000
| | 1080.000
| | 240.000
| style="text-align:center;" | <span style="display: block; text-align: center;">Boundary of propriety</span><span style="display: block; text-align: center;">(generators smaller than this are proper)</span>
|-
| |
| |
| | 38\127
| | 359.055
| | 718.110
| | 1077.165
| | 236.2205
| style="text-align:center;" |
|-
| |
| |
| | 35\117
| | 358.974
| | 717.949
| | 1076.923
| | 235.898
| style="text-align:center;" |
|-
| |
| |
| | 32\107
| | 358.8785
| | 717.757
| | 1076.6355
| | 235.514
| style="text-align:center;" |
|-
| |
| |
| | 29\97
| | 358.763
| | 717.526
| | 1076.289
| | 235.0515
| style="text-align:center;" |
|-
| |
| |
| | 26\87
| | 358.621
| | 717.241
| | 1075.862
| | 234.483
| style="text-align:center;" |
|-
| |
| |
| | 23\77
| | 358.442
| | 716.883
| | 1075.325
| | 233.767
| style="text-align:center;" |
|-
| |
| |
| | 20\67
| | 358.209
| | 716.418
| | 1074.627
| | 232.836
| style="text-align:center;" |
|-
| |
| |
| | 17\57
| | 357.895
| | 715.7895
| | 1073.684
| | 231.579
| style="text-align:center;" |
|-
| |
| |
| | 14\47
| | 357.447
| | 714.894
| | 1072.340
| | 229.787
| style="text-align:center;" |
|-
| |
| |
| | 11\37
| | 356.757
| | 713.514
| | 1070.270
| | 227.027
| style="text-align:center;" |
|-
| |
| |
| |
| | 356.5035
| | 713.007
| | 1069.511
| | 226.014
| |
|-
| |
| |
| | 8\27
| | 355.556
| | 711.111
| | 1066.667
| | 222.222
| style="text-align:center;" | <span style="display: block; text-align: center;">Beatles is around here</span>
|-
| |
| |
| |
| | 354.930
| | 709.859
| | 1064.789
| | 219.718
| style="text-align:center;" | <span style="display: block; text-align: center;">Golden neutral thirds scale</span>
|-
| |
| |
| | 21\71
| | 354.783
| | 709.565
| | 1064.348
| | 219.13
| style="text-align:center;" |
|-
| |
| |
| | 13\44
| | 354.5455
| | 709.091
| | 1063.636
| | 218.182
| style="text-align:center;" |
|-
| |
| |
| |
| | 354.088
| | 708.177
| | 1062.266
| | 216.354
| |
|-
| |
| | 5\17
| |
| | 352.941
| | 705.882
| | 1058.824
| | 211.765
| style="text-align:center;" | <span style="display: block; text-align: center;">Optimum rank range (L/s=3/2)</span>
|-
| |
| |
| | 12\41
| | 351.220
| | 702.439
| | 1053.659
| | 204.878
| style="text-align:center;" | <span style="display: block; text-align: center;">2.3.11 neutral thirds scale is around here</span>
|-
| |
| | 7\24
| |
| | 350.000
| | 700.000
| | 1050.000
| | 200.000
| style="text-align:center;" |
|-
| |
| |
| | 16\55
| | 349.091
| | 698.182
| | 1047.273
| | 196.364
| |
|-
| |
| | 9\31
| |
| | 348.387
| | 696.774
| | 1045.161
| | 193.548
| style="text-align:center;" | <span style="display: block; text-align: center;">Mohajira/dicot is around here</span>
|-
| |
| | 11\38
| |
| | 347.368
| | 694.737
| | 1042.105
| | 189.474
| |
|-
| | 2\7
| |
| |
| | 342.857
| | 685.714
| | 1028.571
| | 171.429
| style="text-align:center;" |
|}


In the as-yet unnamed northern territory, the generators are major thirds (including some very flat ones), and two generators are definitely sharp of a perfect fifth. L ranges from a "supermajor second" to a "major third" and s is a "semitone" or smaller.</pre></div>
3\10 on this chart represents a dividing line between "neutral third scales" on the bottom (eg. [[17edo_neutral_scale|17edo neutral scale]]), and something else I don't have a name for yet on the top, with [[10edo|10edo]] standing in between. (What do you call this region, dear reader?) Of course, magic is in the top half, but it's a pretty specific scale and doesn't describe the whole range. MOS-wise, the neutral third scales, after three more generations, make MOS [[7L_3s|7L 3s]] ("unfair mosh"); the other scales make MOS [[3L_7s|3L 7s]] ("fair mosh").
<h4>Original HTML content:</h4>
<div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;width:200%;white-space: pre-wrap ! important" class="old-revision-html">&lt;html&gt;&lt;head&gt;&lt;title&gt;3L 4s&lt;/title&gt;&lt;/head&gt;&lt;body&gt;&lt;!-- ws:start:WikiTextHeadingRule:0:&amp;lt;h1&amp;gt; --&gt;&lt;h1 id="toc0"&gt;&lt;a name="x3L 4s - &amp;quot;mosh&amp;quot;"&gt;&lt;/a&gt;&lt;!-- ws:end:WikiTextHeadingRule:0 --&gt;3L 4s - &amp;quot;mosh&amp;quot;&lt;/h1&gt;
&lt;br /&gt;
MOS scales of this form are built from a generator that falls between 1\3 (one degree of &lt;a class="wiki_link" href="/3edo"&gt;3edo&lt;/a&gt; - 400 cents) and 2\7 (two degrees of &lt;a class="wiki_link" href="/7edo"&gt;7edo&lt;/a&gt; - 343 cents.&lt;br /&gt;
&lt;br /&gt;
It has the form s L s L s L s and its various &amp;quot;modes&amp;quot; (with &lt;a class="wiki_link" href="/Modal%20UDP%20Notation"&gt;Modal UDP Notation&lt;/a&gt; and nicknames coined by &lt;a class="wiki_link" href="/Andrew%20Heathwaite"&gt;Andrew Heathwaite&lt;/a&gt;) are:&lt;br /&gt;
&lt;br /&gt;


In "neutral third scale territory," the generators are all "neutral thirds," and two of them make an approximation of the "perfect fifth." Additionally, the L of the scale is somewhere around a "whole tone" and the s of the scale is somewhere around a "neutral tone".


&lt;table class="wiki_table"&gt;
In the as-yet unnamed northern territory, the generators are major thirds (including some very flat ones), and two generators are definitely sharp of a perfect fifth. L ranges from a "supermajor second" to a "major third" and s is a "semitone" or smaller.
    &lt;tr&gt;
[[Category:mos]]
        &lt;td style="text-align: center;"&gt;&lt;strong&gt;Mode&lt;/strong&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;&lt;strong&gt;UDP&lt;/strong&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;&lt;strong&gt;Nickname&lt;/strong&gt;&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;s L s L s L s&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;3|3&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;bish&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;L s L s L s s&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;6|0&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;dril&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;s L s L s s L&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;2|4&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;fish&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;L s L s s L s&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;5|1&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;gil&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;s L s s L s L&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;1|5&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;jwl&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;L s s L s L s&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;4|2&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;kleeth&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;s s L s L s L&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;0|6&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;led&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
&lt;/table&gt;
 
The two notable harmonic entropy minima with this pattern are neutral third scales (&amp;quot;dicot&amp;quot; / &amp;quot;hemififth&amp;quot; / &amp;quot;mohajira&amp;quot;) where two generators make a 3/2, and &lt;a class="wiki_link" href="/Magic%20family"&gt;magic&lt;/a&gt;, where the generator is a 5/4 but five of them make a 3/1.&lt;br /&gt;
 
 
&lt;table class="wiki_table"&gt;
    &lt;tr&gt;
        &lt;th&gt;&lt;br /&gt;
&lt;/th&gt;
        &lt;th&gt;&lt;br /&gt;
&lt;/th&gt;
        &lt;th&gt;&lt;br /&gt;
&lt;/th&gt;
        &lt;th&gt;g&lt;br /&gt;
&lt;/th&gt;
        &lt;th&gt;2g&lt;br /&gt;
&lt;/th&gt;
        &lt;th&gt;3g&lt;br /&gt;
&lt;/th&gt;
        &lt;th&gt;4g (-1200)&lt;br /&gt;
&lt;/th&gt;
        &lt;th&gt;comments&lt;br /&gt;
&lt;/th&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;1\3&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;400.000&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;800.000&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1200.000&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;400.000&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;15\46&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;391.304&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;782.609&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1173.913&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;365.217&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;14\43&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;390.698&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;781.395&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1172.093&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;362.791&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;13\40&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;390.000&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;780.000&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1170.000&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;360.000&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;12\37&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;389.189&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;778.378&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1167.568&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;356.757&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;11\34&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;388.235&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;776.471&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1164.706&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;352.941&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;10\31&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;387.097&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;774.194&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1161.290&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;348.387&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;&lt;span style="display: block; text-align: center;"&gt;&lt;a class="wiki_link" href="http://xenharmonic.wikispaces.com/W%C3%BCrschmidt%20family"&gt;Würschmidt&lt;/a&gt; is around here&lt;/span&gt;&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;19\59&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;386.441&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;772.881&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1159.322&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;345.763&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;9\28&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;385.714&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;771.429&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1157.143&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;342.857&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;8\25&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;384.000&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;768.000&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1152.000&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;336.000&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;23\72&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;383.333&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;766.667&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1150.000&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;333.333&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;15\47&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;382.988&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;765.957&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1148.936&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;331.915&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;7\22&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;381.818&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;763.636&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1145.455&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;327.273&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;13\41&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;380.488&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;760.976&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1141.463&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;321.951&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;&lt;span style="display: block; text-align: center;"&gt;Magic is around here&lt;/span&gt;&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;19\60&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;380.000&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;760.000&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1140.000&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;320.000&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;25\79&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;379.747&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;759.494&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1139.2405&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;318.987&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;6\19&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;378.947&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;757.895&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1136.842&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;315.789&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;11\35&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;377.143&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;754.286&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1131.429&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;308.571&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;16\51&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;376.471&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;752.941&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1129.412&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;305.882&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;5\16&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;375.000&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;750.000&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1125.000&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;300.000&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;&lt;span style="display: block; text-align: center;"&gt;L/s = 4&lt;/span&gt;&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;24\77&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;374.026&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;748.052&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1122.078&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;296.104&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;19\61&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;373.7705&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;747.541&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1121.3115&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;295.082&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;14\45&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;373.333&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;746.667&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1120.000&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;293.333&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;9\29&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;372.414&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;744.828&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1117.241&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;289.655&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;13\42&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;371.429&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;742.857&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1114.286&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;285.714&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;17\55&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;370.909&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;741.818&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1112.727&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;283.636&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;370.204&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;740.409&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1110.613&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;280.817&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;&lt;span style="display: block; text-align: center;"&gt;L/s = pi&lt;/span&gt;&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;4\13&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;369.231&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;738.462&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1107.692&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;276.923&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;&lt;span style="display: block; text-align: center;"&gt;L/s = 3&lt;/span&gt;&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;23\75&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;368.000&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;736.000&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1104.000&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;272.000&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;&lt;span style="display: block; text-align: center;"&gt;&lt;br /&gt;
&lt;/span&gt;&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;19\62&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;367.742&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;735.484&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1103.226&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;270.968&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;15\49&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;367.347&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;734.694&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1102.041&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;269.388&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;367.091&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;734.183&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1101.274&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;268.365&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;L/s = e&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;11\36&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;366.667&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;733.333&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1100.000&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;266.667&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;366.256&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;732.513&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1198.77&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;265.026&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;7\23&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;365.217&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;730.435&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1095.652&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;260.870&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;&lt;span style="display: block; text-align: center;"&gt;Modi Sephiratorum (Kosmorsky)&lt;/span&gt;&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;17\56&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;364.286&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;728.571&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1092.857&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;257.143&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;10\33&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;363.636&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;727.272&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1090.909&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;254.545&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;13\43&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;362.791&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;725.581&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1088.372&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;251.163&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;16\53&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;362.264&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;724.528&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1086.7925&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;249.057&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;19\63&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;361.905&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;723.8095&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1085.714&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;247.619&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;3\10&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;360.000&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;720.000&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1080.000&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;240.000&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;&lt;span style="display: block; text-align: center;"&gt;Boundary of propriety&lt;/span&gt;&lt;span style="display: block; text-align: center;"&gt;(generators smaller than this are proper)&lt;/span&gt;&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;38\127&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;359.055&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;718.110&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1077.165&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;236.2205&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;35\117&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;358.974&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;717.949&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1076.923&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;235.898&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;32\107&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;358.8785&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;717.757&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1076.6355&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;235.514&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;29\97&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;358.763&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;717.526&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1076.289&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;235.0515&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;26\87&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;358.621&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;717.241&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1075.862&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;234.483&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;23\77&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;358.442&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;716.883&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1075.325&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;233.767&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;20\67&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;358.209&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;716.418&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1074.627&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;232.836&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;17\57&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;357.895&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;715.7895&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1073.684&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;231.579&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;14\47&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;357.447&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;714.894&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1072.340&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;229.787&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;11\37&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;356.757&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;713.514&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1070.270&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;227.027&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;356.5035&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;713.007&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1069.511&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;226.014&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;8\27&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;355.556&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;711.111&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1066.667&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;222.222&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;&lt;span style="display: block; text-align: center;"&gt;Beatles is around here&lt;/span&gt;&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;354.930&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;709.859&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1064.789&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;219.718&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;&lt;span style="display: block; text-align: center;"&gt;Golden neutral thirds scale&lt;/span&gt;&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;21\71&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;354.783&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;709.565&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1064.348&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;219.13&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;13\44&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;354.5455&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;709.091&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1063.636&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;218.182&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;354.088&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;708.177&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1062.266&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;216.354&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;5\17&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;352.941&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;705.882&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1058.824&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;211.765&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;&lt;span style="display: block; text-align: center;"&gt;Optimum rank range (L/s=3/2)&lt;/span&gt;&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;12\41&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;351.220&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;702.439&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1053.659&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;204.878&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;&lt;span style="display: block; text-align: center;"&gt;2.3.11 neutral thirds scale is around here&lt;/span&gt;&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;7\24&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;350.000&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;700.000&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1050.000&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;200.000&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;16\55&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;349.091&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;698.182&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1047.273&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;196.364&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;9\31&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;348.387&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;696.774&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1045.161&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;193.548&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;&lt;span style="display: block; text-align: center;"&gt;Mohajira/dicot is around here&lt;/span&gt;&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;11\38&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;347.368&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;694.737&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1042.105&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;189.474&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;2\7&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;342.857&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;685.714&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;1028.571&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;171.429&lt;br /&gt;
&lt;/td&gt;
        &lt;td style="text-align: center;"&gt;&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
&lt;/table&gt;
 
&lt;br /&gt;
3\10 on this chart represents a dividing line between &amp;quot;neutral third scales&amp;quot; on the bottom (eg. &lt;a class="wiki_link" href="/17edo%20neutral%20scale"&gt;17edo neutral scale&lt;/a&gt;), and something else I don't have a name for yet on the top, with &lt;a class="wiki_link" href="/10edo"&gt;10edo&lt;/a&gt; standing in between. (What do you call this region, dear reader?) Of course, magic is in the top half, but it's a pretty specific scale and doesn't describe the whole range. MOS-wise, the neutral third scales, after three more generations, make MOS &lt;a class="wiki_link" href="/7L%203s"&gt;7L 3s&lt;/a&gt; (&amp;quot;unfair mosh&amp;quot;); the other scales make MOS &lt;a class="wiki_link" href="/3L%207s"&gt;3L 7s&lt;/a&gt; (&amp;quot;fair mosh&amp;quot;).&lt;br /&gt;
&lt;br /&gt;
In &amp;quot;neutral third scale territory,&amp;quot; the generators are all &amp;quot;neutral thirds,&amp;quot; and two of them make an approximation of the &amp;quot;perfect fifth.&amp;quot; Additionally, the L of the scale is somewhere around a &amp;quot;whole tone&amp;quot; and the s of the scale is somewhere around a &amp;quot;neutral tone&amp;quot;.&lt;br /&gt;
&lt;br /&gt;
In the as-yet unnamed northern territory, the generators are major thirds (including some very flat ones), and two generators are definitely sharp of a perfect fifth. L ranges from a &amp;quot;supermajor second&amp;quot; to a &amp;quot;major third&amp;quot; and s is a &amp;quot;semitone&amp;quot; or smaller.&lt;/body&gt;&lt;/html&gt;</pre></div>