Rank-3 scale theorems: Difference between revisions
Line 24: | Line 24: | ||
==== Definitions: LQ ==== | ==== Definitions: LQ ==== | ||
Let n = | Let n = a_1 + ... + a_r be the scale size, w = a_1 X_1, ..., a_r X_r be the scale word, let L be a line of the form L(t) = (a_1, ..., a_r)t + v_0, where v_0 is a constant vector in R^r. We say that L is ''in generic position'' if L contains a point (0, α_1, α_2, ... α_{r-1}) where α_i and α_i/α_j for i != j are irrational. | ||
* Assume ''S'' is a 2-step scale. Then ''S'' is ''slope-LQ'' if the slope between any two pair of points (representing a ''k''-mosstep) is one of the two nearest possible slopes (in the set {k/0,...,0/k}) to b/a. | * Assume ''S'' is a 2-step scale. Then ''S'' is ''slope-LQ'' if the slope between any two pair of points (representing a ''k''-mosstep) is one of the two nearest possible slopes (in the set {k/0,...,0/k}) to b/a. |