Rank-3 scale theorems: Difference between revisions

Inthar (talk | contribs)
Inthar (talk | contribs)
Line 23: Line 23:
==== Definition: LQ ====
==== Definition: LQ ====
A scale word ''S'' with ''k'' step sizes X_1, ..., X_k (with a_1 X_1's, ..., and a_k X_k's) is ''line-quantizing'' (LQ) if ''S'', when viewed as a set of instructions tracing a path in Z^k from the origin (in which each X_i means "go 1 step in the positive x_i direction"), results in a path that is a closest approximation to the line [a_1 : a_2 : ... : a_k] intersecting the origin in R^k.  
A scale word ''S'' with ''k'' step sizes X_1, ..., X_k (with a_1 X_1's, ..., and a_k X_k's) is ''line-quantizing'' (LQ) if ''S'', when viewed as a set of instructions tracing a path in Z^k from the origin (in which each X_i means "go 1 step in the positive x_i direction"), results in a path that is a closest approximation to the line [a_1 : a_2 : ... : a_k] intersecting the origin in R^k.  
Let n = a+b+c be the scale size, w = aX bY cZ be the scale word, let R be the corresponding path following the word w (R(k) = your location after taking k steps according to w), and put n+1 equally spaced points p_n on the line segment L = {(a,b,c)t : 0 <= t <= n}, i.e. the points {L(k) = (a,b,c) k : k ∈ {0, ..., n}}. Say ''S'' ''pointwise-least-squares-LQ'' if the sum of squares of the distances of the points R(k) to the corresponding point L(k) is minimized; say ''S'' is ''pointwise-minimax-LQ'' if the max is minimized. Say that a mos (MV2) scale ''S'' is ''slope-LQ'' if the slope between any two pair of points (representing a ''k''-mosstep) is one of the two nearest possible slopes (in the set {k/0,...,0/k}) to b/a.
Let n = a+b+c be the scale size, w = aX bY cZ be the scale word, let R be the corresponding path following the word w (R(k) = your location after taking k steps according to w), and put n+1 equally spaced points p_n on the line segment L = {(a,b,c)t : 0 <= t <= n}, i.e. the points {L(k) = (a,b,c) k : k ∈ {0, ..., n}}. Say ''S'' ''pointwise-least-squares-LQ'' if the sum of squares of the distances of the points R(k) to the corresponding point L(k) is minimized; say ''S'' is ''pointwise-minimax-LQ'' if the max distance max{|R(k)-L(k)| : k} is minimized. Say that a mos (MV2) scale ''S'' is ''slope-LQ'' if the slope between any two pair of points (representing a ''k''-mosstep) is one of the two nearest possible slopes (in the set {k/0,...,0/k}) to b/a.


==== Lemma 0: Mosses are LQ ====
==== Lemma 0: Mosses are LQ ====