The Riemann zeta function and tuning: Difference between revisions
→Zeta EDO lists: clarified: "demand no octave stretching" -> "allow no octave stretching" |
remove space |
||
Line 1: | Line 1: | ||
__FORCETOC__ | __FORCETOC__ | ||
The Riemann zeta function is a famous mathematical function, best known for its relationship with the Riemann Hypothesis, a 200-year old unsolved problem involving the distribution of the prime numbers. However, it also has an incredible musical interpretation as measuring the "harmonicity" of an equal temperament. Put simply, the zeta function shows, in a certain sense, how well a given equal temperament approximates the harmonic series, and indeed *all* rational numbers, even up to "infinite-limit JI." | The Riemann zeta function is a famous mathematical function, best known for its relationship with the Riemann Hypothesis, a 200-year old unsolved problem involving the distribution of the prime numbers. However, it also has an incredible musical interpretation as measuring the "harmonicity" of an equal temperament. Put simply, the zeta function shows, in a certain sense, how well a given equal temperament approximates the harmonic series, and indeed *all* rational numbers, even up to "infinite-limit JI." | ||