Consistency: Difference between revisions
mNo edit summary Tags: Mobile edit Mobile web edit |
Tags: Mobile edit Mobile web edit |
||
Line 27: | Line 27: | ||
(The 1/(2(''m''+1)) threshold is meant to allow stacking ''m'' dyads that occur in the chord without having the sum of the dyads have over 50% relative error. Since "consistent to distance ''m''" conveys the idea that a local neighborhood of the consonant chord in the JI lattice is mapped nicely, an approximation consistent to distance ''m'' would play more nicely in a regular temperament-style [[subgroup]] context.) | (The 1/(2(''m''+1)) threshold is meant to allow stacking ''m'' dyads that occur in the chord without having the sum of the dyads have over 50% relative error. Since "consistent to distance ''m''" conveys the idea that a local neighborhood of the consonant chord in the JI lattice is mapped nicely, an approximation consistent to distance ''m'' would play more nicely in a regular temperament-style [[subgroup]] context.) | ||
Since a consistent approximation must be unique, it suffices to find the consistent approximation and check the relative error of one chord. | Since a consistent approximation must be unique, it suffices to find the consistent approximation and check the relative error of one chord to show distance-''m'' consistency. | ||
For example, 4:5:6:7 is consistent to distance 2 in [[31edo]]. However, 4:5:6:7:11 is only consistent and not to distance 1 because 11/5 is mapped too inaccurately (rel error 26.2%). This shows that 31edo is especially strong in the 2.3.5.7 subgroup and weaker in 2.3.5.7.11. | For example, 4:5:6:7 is consistent to distance 2 in [[31edo]]. However, 4:5:6:7:11 is only consistent and not to distance 1 because 11/5 is mapped too inaccurately (rel error 26.2%). This shows that 31edo is especially strong in the 2.3.5.7 subgroup and weaker in 2.3.5.7.11. |