The wedgie: Difference between revisions

Inthar (talk | contribs)
Inthar (talk | contribs)
Line 26: Line 26:
The period ''p'' (fraction of octave) and generator ''g'' form a basis for all the intervals of a rank-2 temperament. For example, p = 2/1 and g = 3/2 form a basis for meantone. But from a linear algebra perspective, there's nothing special about the basis {p, g}; I could have chosen the basis p' = 3/1 and g' = 2/1. What makes the wedgie a unique identifier for a temperament is that rather than specify the period and generator directly, the wedgie acts more like a set of constraints that any basis for the temperament must satisfy.  
The period ''p'' (fraction of octave) and generator ''g'' form a basis for all the intervals of a rank-2 temperament. For example, p = 2/1 and g = 3/2 form a basis for meantone. But from a linear algebra perspective, there's nothing special about the basis {p, g}; I could have chosen the basis p' = 3/1 and g' = 2/1. What makes the wedgie a unique identifier for a temperament is that rather than specify the period and generator directly, the wedgie acts more like a set of constraints that any basis for the temperament must satisfy.  


In the language of linear algebra, the wedgie is an "alternating bilinear form" on the appropriate JI group M; this means that it acts like the operation of finding the determinant of two vectors on the appropriate quotient module M' = M/K of M, where K is the kernel of W. One can verify that K is exactly the kernel of the rank-2 temperament. In geometric terms, given JI ratios u and v, and wedgie W, the number W(u,v) is the signed area of the parallelogram spanned by (tempered versions of) u and v. The entries of the wedgie give the values of the wedgie on the basis elements of the JI subgroup that the temperament is on. By the alternating property [i.e. W(u, v) = -W(v, u)] and bilinearity [W is linear in each argument separately], specifying the values on basis elements of the JI subgroup is enough to define W as an alternating bilinear form on all of the JI subgroup. This is the determinant of the tempered versions of u and v.
In the language of linear algebra, the wedgie is an "alternating bilinear form" on the appropriate JI group M; this means that it acts like the operation of finding the determinant of two vectors on the appropriate quotient module M' = M/K of M, where K is the kernel of the biliear form W. One can verify that K is exactly the kernel of the rank-2 temperament. In geometric terms, given JI ratios u and v, and wedgie W, the number W(u,v) is the signed area of the parallelogram spanned by (tempered versions of) u and v. The entries of the wedgie give the values of the wedgie on the basis elements of the JI subgroup that the temperament is on. By the alternating property [i.e. W(u, v) = -W(v, u)] and bilinearity [W is linear in each argument separately], specifying the values on basis elements of the JI subgroup is enough to define W as an alternating bilinear form on all of the JI subgroup. This is the determinant of the tempered versions of u and v.


The musical interpretation of the parallelogram spanned by u and v is: If you want to consider intervals that are multiples of u apart the same note (for example, if you want an octave-equivalent scale), W(u, v) tells you how many generators it take to get to v. Let's label this (*).
The musical interpretation of the parallelogram spanned by u and v is: If you want to consider intervals that are multiples of u apart the same note (for example, if you want an octave-equivalent scale), W(u, v) tells you how many generators it take to get to v. Let's label this (*).