User:Aura/Aura's Ideas on Tonality: Difference between revisions

Aura (talk | contribs)
No edit summary
Aura (talk | contribs)
No edit summary
Line 31: Line 31:
Building on Kite's logic, we can then apply similar distinctions among quartertones, and thus make the argument that quartertones don't have to denote exactly one fourth of a whole tone in as of themselves, but rather, they only have to add up to a whole tone when paired up correctly.  However, it should be noted that for quartertones, there are sometimes multiple correct options, and thus, things are more complicated.  We shall begin to define the musical functions of quartertones by drawing a distinction between the terms "Parachromatic" and "Paradiatonic" for purposes of classifying quartertone intervals.  For starters, paradiatonic quartertones are analogous to diatonic semitones in that they are denoted as seconds, albeit subminor seconds, while parachromatic quartertones are denoted as superprimes of some sort.  However, the distinction goes further than that- a parachromatic quartertone and a paradiatonic quartertone add up to a diatonic semitone, while two parachromatic quartertones add up to a chromatic semitone.  Given both these definitions for "paradiatonic" and "parachromatic", and given that a diatonic semitone and a chromatic semitone add up to a whole tone when paired correctly, we can deduce that a whole tone can be assembled from three parachromatic quartertones and one paradiatonic quartertone.  Because there are sometimes multiple correct options for assembling parachromatic and paradiatonic intervals to make a 9/8 whole tone, we have to choose the simplest configuration of paradiatonic and parachromatic intervals to assemble in order to create a 9/8 whole tone- a configuration that only requires one type of parachromatic quartertone and one type of paradiatonic quartertone.  From here, we have to select simple parachromatic quartertones from the lowest p-limit that, when subtracted from 9/8, yield the paradiatonic interval with the lowest odd limit.
Building on Kite's logic, we can then apply similar distinctions among quartertones, and thus make the argument that quartertones don't have to denote exactly one fourth of a whole tone in as of themselves, but rather, they only have to add up to a whole tone when paired up correctly.  However, it should be noted that for quartertones, there are sometimes multiple correct options, and thus, things are more complicated.  We shall begin to define the musical functions of quartertones by drawing a distinction between the terms "Parachromatic" and "Paradiatonic" for purposes of classifying quartertone intervals.  For starters, paradiatonic quartertones are analogous to diatonic semitones in that they are denoted as seconds, albeit subminor seconds, while parachromatic quartertones are denoted as superprimes of some sort.  However, the distinction goes further than that- a parachromatic quartertone and a paradiatonic quartertone add up to a diatonic semitone, while two parachromatic quartertones add up to a chromatic semitone.  Given both these definitions for "paradiatonic" and "parachromatic", and given that a diatonic semitone and a chromatic semitone add up to a whole tone when paired correctly, we can deduce that a whole tone can be assembled from three parachromatic quartertones and one paradiatonic quartertone.  Because there are sometimes multiple correct options for assembling parachromatic and paradiatonic intervals to make a 9/8 whole tone, we have to choose the simplest configuration of paradiatonic and parachromatic intervals to assemble in order to create a 9/8 whole tone- a configuration that only requires one type of parachromatic quartertone and one type of paradiatonic quartertone.  From here, we have to select simple parachromatic quartertones from the lowest p-limit that, when subtracted from 9/8, yield the paradiatonic interval with the lowest odd limit.


Now that we have answered the questions as to both the musical significance and musical function of quartertones, we can take a look at the 7-limit, the 11-limit, the 13-limit, along with the 17-limit and the 19-limit, and compare the various quartertones of these limits, .  For the 7-limit, you have 36/35, the septimal quartertone; when a stack of three septimal quartertones is subtracted from 9/8, we get a paradiatonic quartertone with a ratio of 42875/41472- not exactly a simple interval.  Next we have the 11-limit, and for the 11-limit, you have 33/32, the undecimal quartertone; when a stack of three undecimal quartertones is subtracted from 9/8, we get a paradiatonic quartertone with a ratio of 4096/3993- this is better, but we still have to look at the remaining contenders.  For the 13-limit, we have 40/39; when a stack of three 40/39 intervals is subtracted from 9/8, we get an interval with a ratio of 533871/512000- this is even worse than for the 7-limit.  For the 17-limit, we have 34/33, the septendecimal quartertone; when a stack of three septendecimal quartertones is subtracted from 9/8, we get a quartertone with a ratio of 323433/314432- this is also worse than for the 7-limit.  Finally, we have the 19-limit, and for the 19-limit, we have 39/38; when a stack of three 39/38 intervals is subtracted from 9/8, we get an interval with a ratio of 6859/6591- better than for the 7-limit, but still not as good as for the 11-limit.
Now that we have answered the questions as to both the musical significance and musical function of quartertones, we can take a look at the 7-limit, the 11-limit, the 13-limit, along with the 17-limit and the 19-limit, and compare the various quartertones of these limits.  For the 7-limit, you have 36/35, the septimal quartertone; when a stack of three septimal quartertones is subtracted from 9/8, we get a paradiatonic quartertone with a ratio of 42875/41472- not exactly a simple interval.  Next we have the 11-limit, and for the 11-limit, you have 33/32, the undecimal quartertone; when a stack of three undecimal quartertones is subtracted from 9/8, we get a paradiatonic quartertone with a ratio of 4096/3993- this is better, but we still have to look at the remaining contenders.  For the 13-limit, we have 40/39; when a stack of three 40/39 intervals is subtracted from 9/8, we get an interval with a ratio of 533871/512000- this is even worse than for the 7-limit.  For the 17-limit, we have 34/33, the septendecimal quartertone; when a stack of three septendecimal quartertones is subtracted from 9/8, we get a quartertone with a ratio of 323433/314432- this is also worse than for the 7-limit.  Finally, we have the 19-limit, and for the 19-limit, we have 39/38; when a stack of three 39/38 intervals is subtracted from 9/8, we get an interval with a ratio of 6859/6591- better than for the 7-limit, but still not as good as for the 11-limit.


In order to be thorough, I've since checked the 11-limit's representation of quartertones against that of the other rational intervals called "quarter tones" [https://en.wikipedia.org/wiki/List_of_pitch_intervals on Wikipedia's list of pitch intervals] and again found the 11-limit's 33/32 to be better than any of them in terms of ratio simplicity.  Therefore, the 11-limit is the most suitable p-limit for representing quartertones.  While must confess that I didn't initially choose the 11-limit on these exact bases- rather, it was because of how well the 11-limit is represented in 24edo- the math indicates that I somehow managed to make the best choice in spite of myself.  However, this still leaves the question of whether the 11-limit can serve as a navigational axis of any kind, as this is another question that must be answered in order to determine whether or not there is any merit to the idea of the 11-limit being considered a navigational prime.  However, in order to even begin to consider this, we must familiarize ourselves with some of the 11-limit's inner workings.
In order to be thorough, I've since checked the 11-limit's representation of quartertones against that of the other rational intervals called "quarter tones" [https://en.wikipedia.org/wiki/List_of_pitch_intervals on Wikipedia's list of pitch intervals] and again found the 11-limit's 33/32 to be better than any of them in terms of ratio simplicity.  Therefore, the 11-limit is the most suitable p-limit for representing quartertones.  While must confess that I didn't initially choose the 11-limit on these exact bases- rather, it was because of how well the 11-limit is represented in 24edo- the math indicates that I somehow managed to make the best choice in spite of myself.  However, this still leaves the question of whether the 11-limit can serve as a navigational axis of any kind, as this is another question that must be answered in order to determine whether or not there is any merit to the idea of the 11-limit being considered a navigational prime.  However, in order to even begin to consider this, we must familiarize ourselves with some of the 11-limit's inner workings.