Constant structure: Difference between revisions
reworked |
lemma bold |
||
Line 1: | Line 1: | ||
A [[scale]] is said to have ''constant structure'' (CS) if its generic interval classes are distinct. That is, each interval occurs always subtended by the same number of steps. This means that you never get something like an interval being counted as a fourth one place, and a fifth another place. | A [[scale]] is said to have '''constant structure''' (CS) if its generic interval classes are distinct. That is, each interval occurs always subtended by the same number of steps. This means that you never get something like an interval being counted as a fourth one place, and a fifth another place. | ||
The term "constant structure" was coined by [[Erv Wilson]]. In academic music theory, constant structure is called the partitioning property, but Erv got there first. | The term "constant structure" was coined by [[Erv Wilson]]. In academic music theory, constant structure is called the partitioning property, but Erv got there first. |