Constant structure: Difference between revisions
m formatting, category |
reworked |
||
Line 5: | Line 5: | ||
To determine if a scale is CS, all possible intervals between scale steps must be evaluated. An easy way to do this is with an [[interval matrix]] ([[Scala]] can do this for you). A CS scale will never have the same interval appear in multiple columns of the matrix (columns correspond to generic interval classes). | To determine if a scale is CS, all possible intervals between scale steps must be evaluated. An easy way to do this is with an [[interval matrix]] ([[Scala]] can do this for you). A CS scale will never have the same interval appear in multiple columns of the matrix (columns correspond to generic interval classes). | ||
=Examples= | == Examples == | ||
This common pentatonic scale is a constant structure: 1/1 - 9/8 - 5/4 - 3/2 - 5/3 - 2/1 | This common pentatonic scale is a constant structure: 1/1 - 9/8 - 5/4 - 3/2 - 5/3 - 2/1 | ||
Here is the interval matrix of this scale: | Here is the interval matrix of this scale: | ||
{| class="wikitable" | {| class="wikitable center-all" | ||
! | |||
! 1 | |||
! 2 | |||
! 3 | |||
! 4 | |||
! 5 | |||
! (6) | |||
|- | |- | ||
! 1/1 | |||
| 1/1 | |||
| 9/8 | |||
| 5/4 | |||
| 3/2 | |||
| 5/3 | |||
| 2/1 | |||
|- | |- | ||
! 9/8 | |||
| 1/1 | |||
| 10/9 | |||
| 4/3 | |||
| 40/27 | |||
| 16/9 | |||
| 2/1 | |||
|- | |- | ||
! 5/4 | |||
| 1/1 | |||
| 6/5 | |||
| 4/3 | |||
| 8/5 | |||
| 9/5 | |||
| 2/1 | |||
|- | |- | ||
! 3/2 | |||
| 1/1 | |||
| 10/9 | |||
| 4/3 | |||
| 3/2 | |||
| 5/3 | |||
| 2/1 | |||
|- | |- | ||
! 5/3 | |||
| 1/1 | |||
| 6/5 | |||
| 27/20 | |||
| 3/2 | |||
| 9/5 | |||
| 2/1 | |||
|} | |} | ||
Note that every interval always appears in the same position (column). For example, 3/2, which happens to appear three times, is always the "fourth" of this scale - never the "third" or "fifth". | Note that every interval always appears in the same position (column). For example, 3/2, which happens to appear three times, is always the "fourth" of this scale - never the "third" or "fifth". | ||
Line 66: | Line 66: | ||
Its interval matrix: | Its interval matrix: | ||
{| class="wikitable" | {| class="wikitable center-all" | ||
! | |||
! 1 | |||
! 2 | |||
! 3 | |||
! 4 | |||
! 5 | |||
! (6) | |||
|- | |- | ||
! 1/1 | |||
| 1/1 | |||
| 25/24 | |||
| <span style="background-color: #ffcc44;">6/5</span> | |||
| 3/2 | |||
| <span style="background-color: #ffcc44;">5/3</span> | |||
| 2/1 | |||
|- | |- | ||
! 25/24 | |||
| 1/1 | |||
| 144/125 | |||
| 36/25 | |||
| <span style="background-color: #ffcc44;">8/5</span> | |||
| 48/25 | |||
| 2/1 | |||
|- | |- | ||
! 6/5 | |||
| 1/1 | |||
| <span style="background-color: #ffcc44;">5/4</span> | |||
| 25/18 | |||
| <span style="background-color: #ffcc44;">5/3</span> | |||
| 125/72 | |||
| 2/1 | |||
|- | |- | ||
! 3/2 | |||
| 1/1 | |||
| 10/9 | |||
| 4/3 | |||
| 25/18 | |||
| <span style="background-color: #ffcc44;">8/5</span> | |||
| 2/1 | |||
|- | |- | ||
! 5/3 | |||
| 1/1 | |||
| <span style="background-color: #ffcc44;">6/5</span> | |||
| <span style="background-color: #ffcc44;">5/4</span> | |||
| 36/25 | |||
| 9/5 | |||
| 2/1 | |||
|} | |} | ||
Note the highlighted intervals that occur in more than one column. For example, 5/4 may occur as both the "second" and "third" steps of the scale. Thus, this scale does not have constant structure. | Note the highlighted intervals that occur in more than one column. For example, 5/4 may occur as both the "second" and "third" steps of the scale. Thus, this scale does not have constant structure. | ||
Line 122: | Line 121: | ||
Interval matrix as steps of 12edo: | Interval matrix as steps of 12edo: | ||
{| class="wikitable" | {| class="wikitable center-all" | ||
! | |||
! 1 | |||
! 2 | |||
! 3 | |||
! 4 | |||
! 5 | |||
! 6 | |||
! 7 | |||
! (8) | |||
|- | |- | ||
! 0 | |||
| | | 0 | ||
| | | 2 | ||
| 4 | |||
| | | 5 | ||
| | | 7 | ||
| | | | 9 | ||
| | | 11 | ||
| | | 12 | ||
|- | |- | ||
! 2 | |||
| 0 | |||
| 2 | |||
| | | 3 | ||
| 5 | |||
| 7 | |||
| 9 | |||
| | | 10 | ||
| 12 | |||
|- | |- | ||
! 4 | |||
| 0 | |||
| | | 1 | ||
| 3 | |||
| 5 | |||
| 7 | |||
| | | 8 | ||
| 10 | |||
| 12 | |||
|- | |- | ||
! 7 | |||
| 0 | |||
| | | 2 | ||
| | | 4 | ||
| | | <span style="background-color: #ffcc44;">6</span> | ||
| 7 | |||
| | | 9 | ||
| | | 11 | ||
| 12 | |||
|- | |- | ||
! 9 | |||
| 0 | |||
| 2 | |||
| 4 | |||
| | | 5 | ||
| 7 | |||
| 9 | |||
| | | 10 | ||
| 12 | |||
|- | |- | ||
! 11 | |||
| 0 | |||
| 2 | |||
| | | 3 | ||
| 5 | |||
| 7 | |||
| | | 8 | ||
| 10 | |||
| 12 | |||
|- | |- | ||
! 12 | |||
| 0 | |||
| 1 | |||
| 3 | |||
| 5 | |||
| <span style="background-color: #ffcc44;">6</span> | |||
| 8 | |||
| 10 | |||
| 12 | |||
|} | |} | ||
Interval matrix as note names: | Interval matrix as note names: | ||
{| class="wikitable" | {| class="wikitable center-all" | ||
! | |||
! 1 | |||
! 2 | |||
! 3 | |||
! 4 | |||
! 5 | |||
! 6 | |||
! 7 | |||
! (8) | |||
|- | |- | ||
! C | |||
| | | C | ||
| | | D | ||
| | | E | ||
| | | F | ||
| | | G | ||
| | | A | ||
| | | B | ||
| | | C | ||
|- | |- | ||
! D | |||
| C | |||
| D | |||
| | | Eb | ||
| F | |||
| G | |||
| A | |||
| | | Bb | ||
| C | |||
|- | |- | ||
! E | |||
| C | |||
| | | Db | ||
| Eb | |||
| F | |||
| G | |||
| | | Ab | ||
| Bb | |||
| C | |||
|- | |- | ||
! F | |||
| C | |||
| | | D | ||
| | | E | ||
| | | <span style="background-color: #ffcc44;">F#</span> | ||
| G | |||
| | | A | ||
| | | B | ||
| C | |||
|- | |- | ||
! G | |||
| C | |||
| D | |||
| E | |||
| | | F | ||
| G | |||
| A | |||
| | | Bb | ||
| C | |||
|- | |- | ||
! A | |||
| C | |||
| D | |||
| | | Eb | ||
| F | |||
| G | |||
| | | Ab | ||
| Bb | |||
| C | |||
|- | |- | ||
! B | |||
| C | |||
| Db | |||
| Eb | |||
| F | |||
| <span style="background-color: #ffcc44;">Gb</span> | |||
| Ab | |||
| Bb | |||
| C | |||
|} | |} | ||
F# and Gb are the same pitch (600 cents) in 12edo, and this interval occurs as both an (augmented) fourth and a (diminished) fifth - so not constant structure. (However, a meantone tuning of this scale, in which F# and Gb are distinguished, would have constant structure.) | F# and Gb are the same pitch (600 cents) in 12edo, and this interval occurs as both an (augmented) fourth and a (diminished) fifth - so not constant structure. (However, a meantone tuning of this scale, in which F# and Gb are distinguished, would have constant structure.) | ||
=Density of CS | == Density of CS scales in EDOs == | ||
{| class="wikitable" | {| class="wikitable right-all" | ||
! EDO | |||
! Number of CS Scales | |||
! Percent of Scales CS | |||
! Corresponding Fraction | |||
|- | |- | ||
| | | 1 | ||
| | | 1 | ||
| | | 100.0% | ||
| | | 1/1 | ||
|- | |- | ||
| | | 2 | ||
| 1 | |||
| 100.0% | |||
| 1/1 | |||
|- | |- | ||
| | 2 | | 3 | ||
| 2 | |||
| 100.0% | |||
| 1/1 | |||
|- | |- | ||
| | | 4 | ||
| 2 | |||
| | | 66.7% | ||
| | | 2/3 | ||
|- | |- | ||
| | | 5 | ||
| | | 5 | ||
| | | 83.3% | ||
| | | 5/6 | ||
|- | |- | ||
| | | 6 | ||
| | | 4 | ||
| | | 44.4% | ||
| | | 4/9 | ||
|- | |- | ||
| | | 7 | ||
| | | 11 | ||
| | | 61.1% | ||
| | | 11/18 | ||
|- | |- | ||
| | | 8 | ||
| 11 | |||
| | | 36.7% | ||
| 11/30 | |||
|- | |- | ||
| | | 9 | ||
| | | 22 | ||
| | | 39.3% | ||
| 11/28 | |||
|- | |- | ||
| | | 10 | ||
| | | 20 | ||
| | | 20.2% | ||
| | | 20/99 | ||
|- | |- | ||
| | | 11 | ||
| | | 45 | ||
| | | 24.2% | ||
| | | 15/62 | ||
|- | |- | ||
| | | 12 | ||
| | | 47 | ||
| | | 14.0% | ||
| | | 47/335 | ||
|- | |- | ||
| | | 13 | ||
| | | 85 | ||
| | | 13.5% | ||
| | | 17/126 | ||
|- | |- | ||
| | | 14 | ||
| | | 88 | ||
| | | 7.6% | ||
| | | 88/1161 | ||
|- | |- | ||
| | | 15 | ||
| | | 163 | ||
| 7.5% | |||
| | | 163/2182 | ||
|- | |- | ||
| | | 16 | ||
| | | 165 | ||
| | | 4.0% | ||
| | | 11/272 | ||
|- | |- | ||
| | | 17 | ||
| | | 294 | ||
| | | 3.8% | ||
| | | 49/1285 | ||
|- | |- | ||
| | | 18 | ||
| | | 313 | ||
| | | 2.2% | ||
| | | 313/14532 | ||
|- | |- | ||
| | | 19 | ||
| | | 534 | ||
| | | 1.9% | ||
| | | 89/4599 | ||
|- | |- | ||
| 20 | |||
| 541 | |||
| 1.0% | |||
| 541/52377 | |||
|} | |} | ||
=See also= | == See also == | ||
*[[Gallery of CS Scales]] | |||
*[[Scale properties simplified]] | * [[Gallery of CS Scales]] | ||
*[[epimorphic]] | * [[Scale properties simplified]] | ||
*[http://tonalsoft.com/enc/c/constant-structure.aspx Constant structure] (Tonalsoft Encyclopedia) | * [[epimorphic]] | ||
*[http://anaphoria.com/wilsonintroMOS.html#cs Introduction to Erv Wilson's Moments of Symmetry] | * [http://tonalsoft.com/enc/c/constant-structure.aspx Constant structure] (Tonalsoft Encyclopedia) | ||
* [http://anaphoria.com/wilsonintroMOS.html#cs Introduction to Erv Wilson's Moments of Symmetry] | |||
[[Category:Theory]] | |||
[[Category:Term]] | |||
[[Category:Constant structure]] | [[Category:Constant structure]] | ||
[[Category: | [[Category:Scales]] | ||