Logarithmic approximants: Difference between revisions

Wikispaces>FREEZE
No edit summary
CritDeathX (talk | contribs)
Added Yahoo links
Line 236: Line 236:


==<span style="font-family: Arial,Helvetica,sans-serif;">Definition</span>==
==<span style="font-family: Arial,Helvetica,sans-serif;">Definition</span>==
The quadratic approximant ''<span style="font-family: Georgia,serif; font-size: 110%;">q</span>'' of an interval ''<span style="font-family: Georgia,serif; font-size: 110%;">J</span>'' with frequency ratio <span style="font-family: Georgia,serif; font-size: 110%;">''r'' = ''n''''/d''</span> is
The quadratic approximant ''<span style="font-family: Georgia,serif; font-size: 110%;">q</span>'' of an interval ''<span style="font-family: Georgia,serif; font-size: 110%;">J</span>'' with frequency ratio <span style="font-family: Georgia,serif; font-size: 110%;">''r'' = ''n'<nowiki/>'''/d'''''</span>''' is'''


<math>\qquad q(r) = \tfrac{1}{2} (r^{1/2} – r^{-1/2}) \\
<math>\qquad q(r) = \tfrac{1}{2} (r^{1/2} – r^{-1/2}) \\
Line 362: Line 362:


The most interesting approximate interval ratios derivable from quadratic approximants are irrational.
The most interesting approximate interval ratios derivable from quadratic approximants are irrational.
== ==


==<span style="font-family: Arial,Helvetica,sans-serif;">Relative sizes of intervals between 3 frequencies in arithmetic progression</span>==
==<span style="font-family: Arial,Helvetica,sans-serif;">Relative sizes of intervals between 3 frequencies in arithmetic progression</span>==
Line 393: Line 391:
The ratio of the large tone, <span style="font-family: Georgia,serif; font-size: 110%;">''T'' = <u>9/8</u></span>, to the small tone, <span style="font-family: Georgia,serif; font-size: 110%;">''t'' = <u>10/9</u></span>, as estimated by their quadratic approximants (1/12√2 and 1/6√10) is √5/2, which is the frequency ratio of the mean tone.
The ratio of the large tone, <span style="font-family: Georgia,serif; font-size: 110%;">''T'' = <u>9/8</u></span>, to the small tone, <span style="font-family: Georgia,serif; font-size: 110%;">''t'' = <u>10/9</u></span>, as estimated by their quadratic approximants (1/12√2 and 1/6√10) is √5/2, which is the frequency ratio of the mean tone.


<span style="font-family: Georgia,serif; font-size: 110%;">''T''''/t'' = 203.910/182.404 = 1.11790,</span>
<span style="font-family: Georgia,serif; font-size: 110%;">''T'<nowiki/>'''/t'''''<nowiki/>''' = 203.910/182.404 = 1.11790,'''</span>


<span style="font-family: Georgia,serif; font-size: 110%;">√5/2 = 1.11803.</span>
<span style="font-family: Georgia,serif; font-size: 110%;">√5/2 = 1.11803.</span>
Line 536: Line 534:
If these 7-limit intervals are considered to be tempered to their 3-limit counterparts argent is an example of hemifamity temperament. Hemifamity (<u>3120/3103</u>) is the bimodular comma formed from <u>10/7</u> and <u>9/8</u>
If these 7-limit intervals are considered to be tempered to their 3-limit counterparts argent is an example of hemifamity temperament. Hemifamity (<u>3120/3103</u>) is the bimodular comma formed from <u>10/7</u> and <u>9/8</u>


By the [http://en.wikipedia.org/wiki/Gelfond%E2%80%93Schneider_theorem Gelfond-Schneider theorem ] the frequency ratios of all argent intervals (<span style="font-family: Georgia,serif; font-size: 110%;">''r'' = 2</span><span style="font-family: Georgia,serif; font-size: 110%; vertical-align: super;">√2''a''+''b''</span>, where''<span style="font-family: Georgia,serif; font-size: 110%;"> a</span>'' and ''<span style="font-family: Georgia,serif; font-size: 110%;">b</span>'' are integers) are transcendental, with the exception of octave multiples (<span style="font-family: Georgia,serif; font-size: 110%;">''a'' = 0</span>). The frequency ratio of the tempered perfect eleventh (<span style="font-family: Georgia,serif; font-size: 110%;"><u>8/3</u> = <u>2.6666...</u></span>) is the [http://en.wikipedia.org/wiki/Gelfond%E2%80%93Schneider_constant Gelfond-Schneider constant ]or Hilbert number, <span style="font-family: Georgia,serif; font-size: 110%;">2</span><span style="font-family: Georgia,serif; font-size: 110%; vertical-align: super;">√2</span><span style="font-family: Georgia,serif; font-size: 110%;"> = 2.665144</span>...
By the [http://en.wikipedia.org/wiki/Gelfond%E2%80%93Schneider_theorem Gelfond-Schneider theorem] the frequency ratios of all argent intervals (<span style="font-family: Georgia,serif; font-size: 110%;">''r'' = 2</span><span style="font-family: Georgia,serif; font-size: 110%; vertical-align: super;">√2''a''+''b''</span>, where''<span style="font-family: Georgia,serif; font-size: 110%;"> a</span>'' and ''<span style="font-family: Georgia,serif; font-size: 110%;">b</span>'' are integers) are transcendental, with the exception of octave multiples (<span style="font-family: Georgia,serif; font-size: 110%;">''a'' = 0</span>). The frequency ratio of the tempered perfect eleventh (<span style="font-family: Georgia,serif; font-size: 110%;"><u>8/3</u> = <u>2.6666...</u></span>) is the [http://en.wikipedia.org/wiki/Gelfond%E2%80%93Schneider_constant Gelfond-Schneider constant] or Hilbert number, <span style="font-family: Georgia,serif; font-size: 110%;">2</span><span style="font-family: Georgia,serif; font-size: 110%; vertical-align: super;">√2</span><span style="font-family: Georgia,serif; font-size: 110%;"> = 2.665144</span>...


==Golden temperaments==
==Golden temperaments==
Line 674: Line 672:
<span style="color: #333333;">As [[Gene_Ward_Smith|Gene Ward Smith]] has noted, the </span>5-limit comma <span style="color: #333333;">|-433 -137 280&gt; (‘''selenia''’) is remarkably small at just 0.004764 cents. The minute size of this comma can be explained using qu</span>adratic approximants.
<span style="color: #333333;">As [[Gene_Ward_Smith|Gene Ward Smith]] has noted, the </span>5-limit comma <span style="color: #333333;">|-433 -137 280&gt; (‘''selenia''’) is remarkably small at just 0.004764 cents. The minute size of this comma can be explained using qu</span>adratic approximants.


It can be shown, using a suitable [[Comma-based_lattices|comma-based lattice]], that every comma tempered out by 34edo can be expressed as an integer linear combination of the [[Gammic_node|//gammic// comma ]]|-29 -11 20&gt; (4.769 cents) and the ''semisuper'' comma (AKA ''[[vishnuzma|vishnuzma]]'') |23 6 -14&gt; (3.338 cents). In particular,
It can be shown, using a suitable [[Comma-based_lattices|comma-based lattice]], that every comma tempered out by 34edo can be expressed as an integer linear combination of the [[Gammic_node|//gammic// comma]] |-29 -11 20&gt; (4.769 cents) and the ''semisuper'' comma (AKA ''[[vishnuzma|vishnuzma]]'') |23 6 -14&gt; (3.338 cents). In particular,


<span style="color: #333333;"><span style="color: #ffffff; font-family: Arial,Helvetica,sans-serif; font-size: 110%;">###</span>''selenia'' = 7 ''gammic'' – 10 ''semisuper''</span>
<span style="color: #333333;"><span style="color: #ffffff; font-family: Arial,Helvetica,sans-serif; font-size: 110%;">###</span>''selenia'' = 7 ''gammic'' – 10 ''semisuper''</span>


<span style="color: #333333;">So to prove that ''selenia'' is small we must show that ''gammic''''/semisuper'' ≈ 10/7.</span>
<span style="color: #333333;">So to prove that ''selenia'' is small we must show that ''gammic'<nowiki/>'''/semisuper'''''<nowiki/>''' ≈ 10/7.'''</span>


<span style="color: #333333;">''Gammic'' and ''semisuper'' are both bimodular commas:</span>
<span style="color: #333333;">''Gammic'' and ''semisuper'' are both bimodular commas:</span>
Line 762: Line 760:
This article is based on original research by [[Martin_Gough|Martin Gough]]. See [[:File:Bimod_Approx_2014-6-8.pdf|this paper]] for a fuller account of bimodular approximants.
This article is based on original research by [[Martin_Gough|Martin Gough]]. See [[:File:Bimod_Approx_2014-6-8.pdf|this paper]] for a fuller account of bimodular approximants.


The tuning referred to here as argent temperament appears to have been discovered 'about 1950' by Erv Wilson, who named it [http://anaphoria.com/meruthree.pdf 2-zig/2-zag]'. It was later rediscovered independently by [[Graham_Breed|Graham Breed]] and Paul Hahn, who described it in posts (#12599, #12670) to the Yahoo tuning list on 10 and 12 August 2000.
The tuning referred to here as argent temperament appears to have been discovered 'about 1950' by Erv Wilson, who named it [http://anaphoria.com/meruthree.pdf 2-zig/2-zag]'. It was later rediscovered independently by [[Graham_Breed|Graham Breed]] and Paul Hahn, who described it in posts ([https://yahootuninggroupsultimatebackup.github.io/tuning/topicId_12592.html#12599 #12599], [https://yahootuninggroupsultimatebackup.github.io/tuning/topicId_12637.html#12670 #12670]) to the Yahoo tuning list on 10 and 12 August 2000.


Thanks to [[Gene_Ward_Smith|Gene Ward Smith]] for the Gelfond-Schneider result.
Thanks to [[Gene_Ward_Smith|Gene Ward Smith]] for the Gelfond-Schneider result.