Just Hammond: Difference between revisions
table 3 (E-A-B) supplemented |
Table 3 explained |
||
Line 216: | Line 216: | ||
== Mapping Hammond’s Rational Intervals (cont.): Examples == | == Mapping Hammond’s Rational Intervals (cont.): Examples == | ||
The following examples illustrate how to map intervals or chords to the harmonic series. | The following examples illustrate how to map intervals or chords to the harmonic series. | ||
<u>Table 2</u>: Mapping a single interval | <u>Table 2</u>: Mapping a single interval | ||
Line 241: | Line 241: | ||
| style="text-align: center;" | (C) | | style="text-align: center;" | (C) | ||
| style="text-align: center;" | (D) | | style="text-align: center;" | (D) | ||
| | | colspan="5" rowspan="2" style="text-align: center; background-color:#cbcefb;" | | ||
...of Column (D)<br><br><br><br> | ...of Column (D)<br><br><br><br> | ||
| rowspan="2" style="text-align: center;" | | | rowspan="2" style="text-align: center;" | | ||
Line 279: | Line 279: | ||
| style="text-align: center;" | 9.6 | | style="text-align: center;" | 9.6 | ||
|- | |- | ||
| colspan="3" | | colspan="3" | | ||
Multiply --------><br> | Multiply --------><br> | ||
to find (D)'s least<br> | to find (D)'s least<br> | ||
Line 298: | Line 298: | ||
|} | |} | ||
The resulting interval E-A appears between partial # 206 and partial # 275. | In this first example we map the combination of a Hammond Organ’s note E and a higher note A (a fourth up) to the harmonic series. The resulting interval E-A appears between partial # 206 and partial # 275. Thus the frequency ratio is (275:206), which equals 500.14 cents. | ||
<u>Table 3</u>: Supplement of an upper note "B" | |||
{| class="wikitable" | {| class="wikitable" | ||
Line 325: | Line 323: | ||
| style="text-align: center;" | (C) | | style="text-align: center;" | (C) | ||
| style="text-align: center;" | (D) | | style="text-align: center;" | (D) | ||
| | | colspan="6" rowspan="2" style="text-align: center; background-color:#cbcefb;" | | ||
...of Column (D)<br><br><br><br> | ...of Column (D)<br><br><br><br> | ||
| rowspan="2" style="text-align: center;" | | | rowspan="2" style="text-align: center;" | | ||
Line 397: | Line 395: | ||
|} | |} | ||
The second example illustrates how to map the resulting sus4-chord to the harmonic series. | |||
The supplemental note B establishes an additional prime factor. We find the matching pattern of partials for this sus4-chord (1442:1925:2160) farther up in the harmonic series, where this chord spans the boundary between the 11<sup>th</sup> and the 12<sup>th</sup> octave. | |||
[...WILL BE CONTINUED] | [...WILL BE CONTINUED] |