Just Hammond: Difference between revisions

table 3 (E-A-B) supplemented
Table 3 explained
Line 216: Line 216:


== Mapping Hammond’s Rational Intervals (cont.): Examples ==
== Mapping Hammond’s Rational Intervals (cont.): Examples ==
The following examples illustrate how to map intervals or chords to the harmonic series. In the first example we map the combination of a Hammond Organ’s note E and a higher note A (a fourth up):
The following examples illustrate how to map intervals or chords to the harmonic series.  


<u>Table 2</u>: Mapping a single interval
<u>Table 2</u>: Mapping a single interval
Line 241: Line 241:
| style="text-align: center;" | (C)
| style="text-align: center;" | (C)
| style="text-align: center;" | (D)
| style="text-align: center;" | (D)
| rowspan="2" colspan="5" style="text-align: center; background-color:#cbcefb;" |  
| colspan="5" rowspan="2" style="text-align: center; background-color:#cbcefb;" |  
...of Column (D)<br><br><br><br>
...of Column (D)<br><br><br><br>
| rowspan="2" style="text-align: center;" |  
| rowspan="2" style="text-align: center;" |  
Line 279: Line 279:
| style="text-align: center;" | 9.6
| style="text-align: center;" | 9.6
|-
|-
| colspan="3" |  
| colspan="3" |  
Multiply --------><br>
Multiply --------><br>
to find (D)'s least<br>  
to find (D)'s least<br>  
Line 298: Line 298:
|}
|}


The resulting interval E-A appears between partial # 206 and partial # 275.<br>
In this first example we map the combination of a Hammond Organ’s note E and a higher note A (a fourth up) to the harmonic series. The resulting interval E-A appears between partial # 206 and partial # 275. Thus the frequency ratio is (275:206), which equals 500.14 cents.
The frequency ratio is (275:206), which equals 500.14 cents.


 
<u>Table 3</u>: Supplement of an upper note "B"
Amending an upper note B, the next example illustrates how to map the resulting sus4-chord to the harmonic series.


{| class="wikitable"
{| class="wikitable"
Line 325: Line 323:
| style="text-align: center;" | (C)
| style="text-align: center;" | (C)
| style="text-align: center;" | (D)
| style="text-align: center;" | (D)
| rowspan="2" colspan="6" style="text-align: center; background-color:#cbcefb;" |
| colspan="6" rowspan="2" style="text-align: center; background-color:#cbcefb;" |
...of Column (D)<br><br><br><br>
...of Column (D)<br><br><br><br>
| rowspan="2" style="text-align: center;" |  
| rowspan="2" style="text-align: center;" |  
Line 397: Line 395:
|}
|}


The second example illustrates how to map the resulting sus4-chord to the harmonic series.
The supplemental note B establishes an additional prime factor. We find the matching pattern of partials for this sus4-chord (1442:1925:2160) farther up in the harmonic series, where this chord spans the boundary between the 11<sup>th</sup> and the 12<sup>th</sup> octave.


[...WILL BE CONTINUED]
[...WILL BE CONTINUED]