Cuthbert chords: Difference between revisions

Wikispaces>FREEZE
No edit summary
top: re-categorisation (AWB)
Line 1: Line 1:
The '''cuthbert triad''' is an [[Dyadic_chord|essentially tempered dyadic triad]] which consists of two [[13/11|13/11]] thirds making up a [[7/5|7/5]], which implies tempering by [[cuthbert|cuthbert]], the [[847/845|847/845]] comma. It is, in other words, the 847/845-tempered version of 1-13/11-7/5. The cuthbert triad can be extended to the [[garibert_tetrad|garibert tetrad]], which is the {275/273, 847/845} garibert tempering of a tetrad with steps of size 13/11-13/11-13/11-[[6/5|6/5]], leading to a garibert tempering of 1-13/11-7/5-[[5/3|5/3]]. Equal temperaments with cuthbert triads include [[29edo|29edo]], [[33edo|33edo]], [[37edo|37edo]], [[41edo|41edo]], [[46edo|46edo]], [[50edo|50edo]], [[53edo|53edo]], [[58edo|58edo]], [[70edo|70edo]], [[87edo|87edo]], [[94edo|94edo]], [[99edo|99edo]], [[103edo|103edo]], [[111edo|111edo]], [[128edo|128edo]], [[140edo|140edo]], [[149edo|149edo]], [[177edo|177edo]], [[190edo|190edo]], 198, 205, 227, 264, 284 and 388. Equal temperaments with garibert tetrads include 41, 53, and 94; and it is a characteristic chord of [[13-limit|13-limit]] [[Schismatic_family#Garibaldi|garibaldi temperament]].
The '''cuthbert triad''' is an [[Dyadic chord|essentially tempered dyadic triad]] which consists of two [[13/11]] thirds making up a [[7/5]], which implies tempering by [[cuthbert]], the [[847/845]] comma. It is, in other words, the 847/845-tempered version of 1-13/11-7/5. The cuthbert triad can be extended to the [[garibert tetrad]], which is the {275/273, 847/845} garibert tempering of a tetrad with steps of size 13/11-13/11-13/11-[[6/5]], leading to a garibert tempering of 1-13/11-7/5-[[5/3]]. Equal temperaments with cuthbert triads include [[29edo]], [[33edo]], [[37edo]], [[41edo]], [[46edo]], [[50edo]], [[53edo]], [[58edo]], [[70edo]], [[87edo]], [[94edo]], [[99edo]], [[103edo]], [[111edo]], [[128edo]], [[140edo]], [[149edo]], [[177edo]], [[190edo]], 198, 205, 227, 264, 284 and 388. Equal temperaments with garibert tetrads include 41, 53, and 94; and it is a characteristic chord of [[13-limit]] [[Schismatic family#Garibaldi|garibaldi temperament]].
[[Category:13-limit]]
[[Category:13-limit]]
[[Category:chord]]
[[Category:Chords]]
[[Category:cuthbert]]
[[Category:Cuthbert]]
[[Category:dyadic]]
[[Category:Dyadic]]
[[Category:garibaldi]]
[[Category:Garibaldi]]
[[Category:garibert]]
[[Category:Garibert]]
[[Category:gassorma]]
[[Category:Gassorma]]
[[Category:triad]]
[[Category:Triad]]