Consistency: Difference between revisions

Xenllium (talk | contribs)
Tags: Mobile edit Mobile web edit
Jkarimak (talk | contribs)
m "very closer slightly closer" to "slightly closer"
Line 17: Line 17:
An example for a system that ''is'' consistent in the [[7-odd-limit]] is [[12edo]]: 3/2 maps to 7\12, 7/6 maps to 3\12, and 7/4 maps to 10\12, which equals 7\12 plus 3\12. [[12edo]] is also consistent in the [[9-odd-limit]], but not in the [[11-odd-limit]].
An example for a system that ''is'' consistent in the [[7-odd-limit]] is [[12edo]]: 3/2 maps to 7\12, 7/6 maps to 3\12, and 7/4 maps to 10\12, which equals 7\12 plus 3\12. [[12edo]] is also consistent in the [[9-odd-limit]], but not in the [[11-odd-limit]].


One notable example: [[46edo]] is not consistent in the 15 odd limit. The 15:13 interval is very closer slightly closer to 9 degrees of 46edo than to 10 degrees, but the ''functional'' [[15/13]] (the difference between 46edo's versions of [[15/8]] and [[13/8]]) is 10 degrees. However, if we compress the octave slightly (by about a cent), this discrepancy no longer occurs, and we end up with an 18-''integer''-limit consistent system, which makes it ideal for approximating mode 8 of the harmonic series.
One notable example: [[46edo]] is not consistent in the 15 odd limit. The 15:13 interval is slightly closer to 9 degrees of 46edo than to 10 degrees, but the ''functional'' [[15/13]] (the difference between 46edo's versions of [[15/8]] and [[13/8]]) is 10 degrees. However, if we compress the octave slightly (by about a cent), this discrepancy no longer occurs, and we end up with an 18-''integer''-limit consistent system, which makes it ideal for approximating mode 8 of the harmonic series.


==Generalization to non-octave scales==
==Generalization to non-octave scales==