15edt: Difference between revisions
No edit summary |
Tags: Mobile edit Mobile web edit |
||
Line 4: | Line 4: | ||
==Properties== | ==Properties== | ||
15EDT has harmonics 5 and 13 closely in tune, but does not do so well for 7 and 11, which are quite sharp. It tempers out the comma |0 22 -15> in the 5-limit, which is tempered out by [[19edo]] but has an [[optimal patent val]] of [[303edo]]. As a 3.5.13 subgroup system, it tempers out 2197/2187 and 3159/3125. Using the patent val, it tempers out 375/343 and 6561/6125 in the 7-limit; 81/77, 125/121, and 363/343 in the 11-limit; 65/63, 169/165, 585/539, and 1287/1225 in the 13-limit; 51/49, 121/119, 125/119, 189/187, and 195/187 in the 17-limit (no-twos subgroup). 15EDT is related to the 2.3.5.13 subgroup temperament 19&123, which has | 15EDT has harmonics 5 and 13 closely in tune, but does not do so well for 7 and 11, which are quite sharp. It tempers out the mowgli comma, |0 22 -15> in the 5-limit, which is tempered out by [[19edo]] but has an [[optimal patent val]] of [[303edo]]. As a 3.5.13 subgroup system, it tempers out 2197/2187 and 3159/3125. Using the patent val, it tempers out 375/343 and 6561/6125 in the 7-limit; 81/77, 125/121, and 363/343 in the 11-limit; 65/63, 169/165, 585/539, and 1287/1225 in the 13-limit; 51/49, 121/119, 125/119, 189/187, and 195/187 in the 17-limit (no-twos subgroup). 15EDT is related to the 2.3.5.13 subgroup temperament 19&123, which has a mapping [<1 0 0 0|, <0 15 22 35|], where the generator, an approximate 27/25, has a POTE tuning of 126.773, very close to 15EDT. | ||
With the patent 4, it tempers out 36/35, 64/63, and 375/343 in the 3.4.5.7 subgroup; 45/44, 80/77, 81/77, and 363/343 in the 3.4.5.7.11 subgroup; 52/49, 65/63, 65/64, 143/140, and 169/165 in the 3.4.5.7.11.13 subgroup; 51/49, 52/51, 85/84, and 121/119 in the 3.4.5.7.11.13.17 subgroup. | With the patent 4, it tempers out 36/35, 64/63, and 375/343 in the 3.4.5.7 subgroup; 45/44, 80/77, 81/77, and 363/343 in the 3.4.5.7.11 subgroup; 52/49, 65/63, 65/64, 143/140, and 169/165 in the 3.4.5.7.11.13 subgroup; 51/49, 52/51, 85/84, and 121/119 in the 3.4.5.7.11.13.17 subgroup (as well as [[19ED4]]). | ||
==Intervals== | ==Intervals== |