Kite's thoughts on pergens: Difference between revisions

TallKite (talk | contribs)
updated the temperament names, e.g. small gugu to sagugu, and triple yo to triyo.
Spt3125 (talk | contribs)
single style="text-align:center;" per table
Line 17: Line 17:
For example, srutal could be (P8/2, M2/2), but P5 is preferred because it is unsplit. Or it could be (P8/2, P12), but P5 is preferred because it is smaller. Or it could be (P8/2, P4), but P5 is always preferred over P4. Note that P5/2 is <u>not</u> preferred over P4/2. For example, decimal is (P8/2, P4/2), not (P8/2, P5/2).
For example, srutal could be (P8/2, M2/2), but P5 is preferred because it is unsplit. Or it could be (P8/2, P12), but P5 is preferred because it is smaller. Or it could be (P8/2, P4), but P5 is always preferred over P4. Note that P5/2 is <u>not</u> preferred over P4/2. For example, decimal is (P8/2, P4/2), not (P8/2, P5/2).


{| class="wikitable"
{| class="wikitable" style="text-align:center;" 
|-
|-
! colspan="2" | pergen
! colspan="2" | pergen
Line 28: Line 28:
! colspan="2" | [[Color notation|color name]]
! colspan="2" | [[Color notation|color name]]
|-
|-
| style="text-align:center;" | (P8, P5)
| | (P8, P5)
| style="text-align:center;" | unsplit
| | unsplit
| style="text-align:center;" | 81/80
| | 81/80
| style="text-align:center;" | meantone
| | meantone
| style="text-align:center;" | gu
| | gu
| style="text-align:center;" | gT
| | gT
|-
|-
| style="text-align:center;" | "
| | "
| style="text-align:center;" | "
| | "
| style="text-align:center;" | 64/63
| | 64/63
| style="text-align:center;" | archy
| | archy
| style="text-align:center;" | ru
| | ru
| style="text-align:center;" | rT
| | rT
|-
|-
| style="text-align:center;" | "
| | "
| style="text-align:center;" | "
| | "
| style="text-align:center;" | (-14,8,1)
| | (-14,8,1)
| style="text-align:center;" | schismic
| | schismic
| style="text-align:center;" | layo
| | layo
| style="text-align:center;" | LyT
| | LyT
|-
|-
| style="text-align:center;" | (P8/2, P5)
| | (P8/2, P5)
| style="text-align:center;" | half-8ve
| | half-8ve
| style="text-align:center;" | (11, -4, -2)
| | (11, -4, -2)
| style="text-align:center;" | srutal
| | srutal
| style="text-align:center;" | sagugu
| | sagugu
| style="text-align:center;" | sggT
| | sggT
|-
|-
| style="text-align:center;" | "
| | "
| style="text-align:center;" | "
| | "
| style="text-align:center;" | 81/80, 50/49
| | 81/80, 50/49
| style="text-align:center;" | injera
| | injera
| style="text-align:center;" | biruyo and gu
| | biruyo and gu
| style="text-align:center;" | rryy&amp;gT
| | rryy&amp;gT
|-
|-
| style="text-align:center;" | (P8, P5/2)
| | (P8, P5/2)
| style="text-align:center;" | half-5th
| | half-5th
| style="text-align:center;" | 25/24
| | 25/24
| style="text-align:center;" | dicot
| | dicot
| style="text-align:center;" | yoyo
| | yoyo
| style="text-align:center;" | yyT
| | yyT
|-
|-
| style="text-align:center;" | "
| | "
| style="text-align:center;" | "
| | "
| style="text-align:center;" | (-1,5,0,0,-2)
| | (-1,5,0,0,-2)
| style="text-align:center;" | mohajira
| | mohajira
| style="text-align:center;" | lulu
| | lulu
| style="text-align:center;" | 1uuT
| | 1uuT
|-
|-
| style="text-align:center;" | (P8, P4/2)
| | (P8, P4/2)
| style="text-align:center;" | half-4th
| | half-4th
| style="text-align:center;" | 49/48
| | 49/48
| style="text-align:center;" | semaphore
| | semaphore
| style="text-align:center;" | zozo
| | zozo
| style="text-align:center;" | zzT
| | zzT
|-
|-
| style="text-align:center;" | (P8/2, P4/2)
| | (P8/2, P4/2)
| style="text-align:center;" | half-everything
| | half-everything
| style="text-align:center;" | 25/24, 49/48
| | 25/24, 49/48
| style="text-align:center;" | decimal
| | decimal
| style="text-align:center;" | yoyo and zozo
| | yoyo and zozo
| style="text-align:center;" | yy&amp;zzT
| | yy&amp;zzT
|-
|-
| style="text-align:center;" | (P8, P4/3)
| | (P8, P4/3)
| style="text-align:center;" | third-4th
| | third-4th
| style="text-align:center;" | 250/243
| | 250/243
| style="text-align:center;" | porcupine
| | porcupine
| style="text-align:center;" | triyo
| | triyo
| style="text-align:center;" | y<span style="vertical-align: super;">3</span>T
| | y<span style="vertical-align: super;">3</span>T
|-
|-
| style="text-align:center;" | (P8, P11/3)
| | (P8, P11/3)
| style="text-align:center;" | third-11th
| | third-11th
| style="text-align:center;" | (12,-1,0,0,-3)
| | (12,-1,0,0,-3)
| style="text-align:center;" | satrilu
| | satrilu
| style="text-align:center;" | satrilu
| | satrilu
| style="text-align:center;" | s1u<span style="vertical-align: super;">3</span>T
| | s1u<span style="vertical-align: super;">3</span>T
|-
|-
| style="text-align:center;" | (P8/4, P5)
| | (P8/4, P5)
| style="text-align:center;" | quarter-8ve
| | quarter-8ve
| style="text-align:center;" | (3,4,-4)
| | (3,4,-4)
| style="text-align:center;" | diminished
| | diminished
| style="text-align:center;" | quadgu
| | quadgu
| style="text-align:center;" | g<span style="vertical-align: super;">4</span>T
| | g<span style="vertical-align: super;">4</span>T
|-
|-
| style="text-align:center;" | (P8/2, M2/4)
| | (P8/2, M2/4)
| style="text-align:center;" | half-8ve quarter-tone
| | half-8ve quarter-tone
| style="text-align:center;" | (-17,2,0,0,4)
| | (-17,2,0,0,4)
| style="text-align:center;" | laquadlo
| | laquadlo
| style="text-align:center;" | laquadlo
| | laquadlo
| style="text-align:center;" | L1o<span style="vertical-align: super;">4</span>T
| | L1o<span style="vertical-align: super;">4</span>T
|-
|-
| style="text-align:center;" | (P8, P12/5)
| | (P8, P12/5)
| style="text-align:center;" | fifth-12th
| | fifth-12th
| style="text-align:center;" | (-10,-1,5)
| | (-10,-1,5)
| style="text-align:center;" | magic
| | magic
| style="text-align:center;" | laquinyo
| | laquinyo
| style="text-align:center;" | Ly<span style="vertical-align: super;">5</span>T
| | Ly<span style="vertical-align: super;">5</span>T
|}
|}
(P8/2, P4/2) is called half-everything because the fifth is also split in half, and since every 3-limit interval can be expressed as the sum/difference of octaves and fifths, every single 3-limit interval is also split in half.
(P8/2, P4/2) is called half-everything because the fifth is also split in half, and since every 3-limit interval can be expressed as the sum/difference of octaves and fifths, every single 3-limit interval is also split in half.


Line 168: Line 169:
Rank-3 pergens are trickier to find. For example, Breedsmic is 2.3.5.7 with 2401/2400 = (-5,-1,-2,4) tempered out. [http://x31eq.com/cgi-bin/rt.cgi?ets=130_171_270&limit=7 x31.com] gives us this matrix:
Rank-3 pergens are trickier to find. For example, Breedsmic is 2.3.5.7 with 2401/2400 = (-5,-1,-2,4) tempered out. [http://x31eq.com/cgi-bin/rt.cgi?ets=130_171_270&limit=7 x31.com] gives us this matrix:


{| class="wikitable"
{| class="wikitable" style="text-align:center;" 
|-
|-
! |  
! |  
Line 177: Line 178:
|-
|-
! | period
! | period
| style="text-align:center;" | 1
| | 1
| style="text-align:center;" | 1
| | 1
| style="text-align:center;" | 1
| | 1
| style="text-align:center;" | 2
| | 2
|-
|-
! | gen1
! | gen1
| style="text-align:center;" | 0
| | 0
| style="text-align:center;" | 2
| | 2
| style="text-align:center;" | 1
| | 1
| style="text-align:center;" | 1
| | 1
|-
|-
! | gen2
! | gen2
| style="text-align:center;" | 0
| | 0
| style="text-align:center;" | 0
| | 0
| style="text-align:center;" | 2
| | 2
| style="text-align:center;" | 1
| | 1
|}
|}
Thus 2/1 = P, 3/1 = P + 2·G1, 5/1 = P + G1 + 2·G2, and 7/1 = 2·P + G1 + G2. Discard the last column to make a square matrix with zeros below the diagonal, and no zeros on the diagonal:


{| class="wikitable"
Thus 2/1 = P, 3/1 = P + 2·G1, 5/1 = P + G1 + 2·G2, and 7/1 = 2·P + G1 + G2. Discard the last column to make a square matrix with
zeros below the diagonal, and no zeros on the diagonal:
 
{| class="wikitable" style="text-align:center;" 
|-
|-
! |  
! |  
Line 204: Line 207:
|-
|-
! | period
! | period
| style="text-align:center;" | 1
| | 1
| style="text-align:center;" | 1
| | 1
| style="text-align:center;" | 1
| | 1
|-
|-
! | gen1
! | gen1
| style="text-align:center;" | 0
| | 0
| style="text-align:center;" | 2
| | 2
| style="text-align:center;" | 1
| | 1
|-
|-
! | gen2
! | gen2
| style="text-align:center;" | 0
| | 0
| style="text-align:center;" | 0
| | 0
| style="text-align:center;" | 2
| | 2
|}
|}
Use an [http://wims.unice.fr/wims/wims.cgi?session=GF84B8C7BF.1&lang=en&cmd=reply&module=tool%2Flinear%2Fmatmult.en&matA=1+1+1%0D%0A0+2+1%0D%0A0+0+2&matB=&show=A%5E-1 online tool] to invert it. Here "/4" means that each entry is to be divided by the determinant of the last matrix, which is 4.
Use an [http://wims.unice.fr/wims/wims.cgi?session=GF84B8C7BF.1&lang=en&cmd=reply&module=tool%2Flinear%2Fmatmult.en&matA=1+1+1%0D%0A0+2+1%0D%0A0+0+2&matB=&show=A%5E-1 online tool] to invert it. Here "/4" means that each entry is to be divided by the determinant of the last matrix, which is 4.


{| class="wikitable"
{| class="wikitable" style="text-align:center;" 
|-
|-
! |  
! |  
Line 229: Line 233:
|-
|-
! | 2/1
! | 2/1
| style="text-align:center;" | 4
| | 4
| style="text-align:center;" | -2
| | -2
| style="text-align:center;" | -1
| | -1
| |  
| |  
|-
|-
! | 3/1
! | 3/1
| style="text-align:center;" | 0
| | 0
| style="text-align:center;" | 2
| | 2
| style="text-align:center;" | -1
| | -1
| |  
| |  
|-
|-
! | 5/1
! | 5/1
| style="text-align:center;" | 0
| | 0
| style="text-align:center;" | 0
| | 0
| style="text-align:center;" | 2
| | 2
| | /4
| | /4
|}
|}
Thus the period = (4,0,0) / 4 = 2/1= P8, gen1 = (-2,2,0) / 4 = (-1,1,0) / 2 = P5/2, and gen2 = (-1,-1,2) / 4 = (25:6)/4.
Thus the period = (4,0,0) / 4 = 2/1= P8, gen1 = (-2,2,0) / 4 = (-1,1,0) / 2 = P5/2, and gen2 = (-1,-1,2) / 4 = (25:6)/4.


Line 254: Line 259:
Fortunately, there is a better way. Discard the 3rd column instead, and keep the 4th one:
Fortunately, there is a better way. Discard the 3rd column instead, and keep the 4th one:


{| class="wikitable"
{| class="wikitable" style="text-align:center;" 
|-
|-
! |  
! |  
Line 262: Line 267:
|-
|-
! | period
! | period
| style="text-align:center;" | 1
| | 1
| style="text-align:center;" | 1
| | 1
| style="text-align:center;" | 2
| | 2
|-
|-
! | gen1
! | gen1
| style="text-align:center;" | 0
| | 0
| style="text-align:center;" | 2
| | 2
| style="text-align:center;" | 1
| | 1
|-
|-
! | gen2
! | gen2
| style="text-align:center;" | 0
| | 0
| style="text-align:center;" | 0
| | 0
| style="text-align:center;" | 1
| | 1
|}
|}
This inverts to this matrix:
This inverts to this matrix:


{| class="wikitable"
{| class="wikitable" style="text-align:center;" 
|-
|-
! |  
! |  
Line 287: Line 293:
|-
|-
! | 2/1
! | 2/1
| style="text-align:center;" | 2
| | 2
| style="text-align:center;" | -1
| | -1
| style="text-align:center;" | -3
| | -3
| |  
| |  
|-
|-
! | 3/1
! | 3/1
| style="text-align:center;" | 0
| | 0
| style="text-align:center;" | 1
| | 1
| style="text-align:center;" | -1
| | -1
| |  
| |  
|-
|-
! | 7/1
! | 7/1
| style="text-align:center;" | 0
| | 0
| style="text-align:center;" | 0
| | 0
| style="text-align:center;" | 2
| | 2
| | /2
| | /2
|}
|}
Again, period = P8 and gen1 = P5/2. Gen2 = (-3,-1,2)/2. To add gen1 to gen2, add a double gen1 to the 2nd multigen. A double half-5th is a 5th = (-1,1,0), and this gives us (-4,0,2)/2 = (-2,0,1) = 7/4. The fraction disappears, the multigen becomes the gen, and we can add/subtract the period and the gen1 directly. Subtracting an octave and inverting makes gen2 = 8/7. Adding an octave and subtracting 4 half-5ths makes 64/63. The pergen is (P8, P5/2, /1) with /1 = 64/63, rank-3 half-5th. This is far better than (P8, P5/2, (96:25)/4).
Again, period = P8 and gen1 = P5/2. Gen2 = (-3,-1,2)/2. To add gen1 to gen2, add a double gen1 to the 2nd multigen. A double half-5th is a 5th = (-1,1,0), and this gives us (-4,0,2)/2 = (-2,0,1) = 7/4. The fraction disappears, the multigen becomes the gen, and we can add/subtract the period and the gen1 directly. Subtracting an octave and inverting makes gen2 = 8/7. Adding an octave and subtracting 4 half-5ths makes 64/63. The pergen is (P8, P5/2, /1) with /1 = 64/63, rank-3 half-5th. This is far better than (P8, P5/2, (96:25)/4).


Line 338: Line 345:
If the octave is split, the table has a '''perchain''' ("peer-chain", chain of periods) that shows the octave: C -- F#v=Gb^ -- C. Genchains have a theoretically infinite length, but perchains have a finite length. The full rank-2 lattice has genchains running horizontally and perchains running vertically.
If the octave is split, the table has a '''perchain''' ("peer-chain", chain of periods) that shows the octave: C -- F#v=Gb^ -- C. Genchains have a theoretically infinite length, but perchains have a finite length. The full rank-2 lattice has genchains running horizontally and perchains running vertically.


{| class="wikitable"
{| class="wikitable" style="text-align:center;"  
|-
|-
! |  
! |  
Line 351: Line 358:
! | examples
! | examples
|-
|-
| style="text-align:center;" | 1
| | 1
| style="text-align:center;" | (P8, P5)
| | (P8, P5)
unsplit
unsplit
| style="text-align:center;" | none
| | none
| style="text-align:center;" | none
| | none
| style="text-align:center;" | none
| | none
| style="text-align:center;" | C - G
| | C - G
| style="text-align:center;" | pythagorean, meantone, dominant,
| | pythagorean, meantone, dominant,
schismic, mavila, archy, etc.
schismic, mavila, archy, etc.
|-
|-
Line 369: Line 376:
! |  
! |  
|-
|-
| style="text-align:center;" | 2
| | 2
| style="text-align:center;" | (P8/2, P5)
| | (P8/2, P5)
half-8ve
half-8ve
| style="text-align:center;" | ^^d2 (if 5th
| | ^^d2 (if 5th
&gt; 700¢
&gt; 700¢
| style="text-align:center;" | C^^ = B#
| | C^^ = B#
| style="text-align:center;" | P8/2 = vA4 = ^d5
| | P8/2 = vA4 = ^d5
| style="text-align:center;" | C - F#v=Gb^ - C
| | C - F#v=Gb^ - C
| style="text-align:center;" | srutal
| | srutal
^1 = 81/80
^1 = 81/80
|-
|-
| style="text-align:center;" |  
| |  
| style="text-align:center;" | "
| | "
| style="text-align:center;" | vvd2 (if 5th
| | vvd2 (if 5th


&lt; 700¢)
&lt; 700¢)
| style="text-align:center;" | C^^ = Db
| | C^^ = Db
| style="text-align:center;" | P8/2 = ^A4 = vd5
| | P8/2 = ^A4 = vd5
| style="text-align:center;" | C - F#^=Gbv - C
| | C - F#^=Gbv - C
| style="text-align:center;" | injera
| | injera


^1 = 64/63
^1 = 64/63
|-
|-
| style="text-align:center;" |  
| |  
| style="text-align:center;" | "
| | "
| style="text-align:center;" | vvM2
| | vvM2
| style="text-align:center;" | C^^ = D
| | C^^ = D
| style="text-align:center;" | P8/2 = ^4 = vP5
| | P8/2 = ^4 = vP5
| style="text-align:center;" | C - F^=Gv - C
| | C - F^=Gv - C
| style="text-align:center;" | thotho, if 13/8 = M6
| | thotho, if 13/8 = M6


^1 = 27/26
^1 = 27/26
|-
|-
| style="text-align:center;" | 3
| | 3
| style="text-align:center;" | (P8, P4/2)
| | (P8, P4/2)


half-4th
half-4th
| style="text-align:center;" | vvm2
| | vvm2
| style="text-align:center;" | C^^ = Db
| | C^^ = Db
| style="text-align:center;" | P4/2 = ^M2 = vm3
| | P4/2 = ^M2 = vm3
| style="text-align:center;" | C - D^=Ebv - F
| | C - D^=Ebv - F
| style="text-align:center;" | semaphore
| | semaphore


^1 = 64/63
^1 = 64/63
|-
|-
| style="text-align:center;" |  
| |  
| style="text-align:center;" | "
| | "
| style="text-align:center;" | ^^dd2
| | ^^dd2
| style="text-align:center;" | C^^ = B##
| | C^^ = B##
| style="text-align:center;" | P4/2 = vA2 = ^d3
| | P4/2 = vA2 = ^d3
| style="text-align:center;" | C - D#v=Ebb^ - F
| | C - D#v=Ebb^ - F
| style="text-align:center;" | lalayoyo
| | lalayoyo


^1 = 81/80
^1 = 81/80
|-
|-
| style="text-align:center;" | 4
| | 4
| style="text-align:center;" | (P8, P5/2)
| | (P8, P5/2)


half-5th
half-5th
| style="text-align:center;" | vvA1
| | vvA1
| style="text-align:center;" | C^^ = C#
| | C^^ = C#
| style="text-align:center;" | P5/2 = ^m3 = vM3
| | P5/2 = ^m3 = vM3
| style="text-align:center;" | C - Eb^=Ev - G
| | C - Eb^=Ev - G
| style="text-align:center;" | mohajira
| | mohajira


^1 = 33/32
^1 = 33/32
|-
|-
| style="text-align:center;" | 5
| | 5
| style="text-align:center;" | (P8/2, P4/2)
| | (P8/2, P4/2)


half-
half-


everything
everything
| style="text-align:center;" | \\m2,
| | \\m2,


vvA1,
vvA1,
Line 449: Line 456:


vv\\M2
vv\\M2
| style="text-align:center;" | C// = Db
| | C// = Db


C^^ = C#
C^^ = C#


C^^// = D
C^^// = D
| style="text-align:center;" | P4/2 = /M2 = \m3
| | P4/2 = /M2 = \m3


P5/2 = ^m3 = vM3
P5/2 = ^m3 = vM3
Line 461: Line 468:


= ^/4 = v\P5
= ^/4 = v\P5
| style="text-align:center;" | C - D/=Eb\ - F,
| | C - D/=Eb\ - F,


C - Eb^=Ev - G,
C - Eb^=Ev - G,
Line 468: Line 475:


C - F^/=Gv\ - C
C - F^/=Gv\ - C
| style="text-align:center;" | semaphore &amp; mohajira
| | semaphore &amp; mohajira


^1 = 33/32
^1 = 33/32
Line 474: Line 481:
/1 = 64/63
/1 = 64/63
|-
|-
| style="text-align:center;" |  
| |  
| style="text-align:center;" | "
| | "
| style="text-align:center;" | ^^d2,
| | ^^d2,


\\m2,
\\m2,


vv\\A1
vv\\A1
| style="text-align:center;" | C^^ = B#
| | C^^ = B#


C// = Db
C// = Db


C^^// = C#
C^^// = C#
| style="text-align:center;" | P8/2 = vA4 = ^d5
| | P8/2 = vA4 = ^d5


P4/2 = /M2 = \m3
P4/2 = /M2 = \m3


P5/2 = ^/m3 = v\M3
P5/2 = ^/m3 = v\M3
| style="text-align:center;" | C - F#v=Gb^ - C,
| | C - F#v=Gb^ - C,


C - D/=Eb\ - F,
C - D/=Eb\ - F,


C - Eb^/=Ev\ - G
C - Eb^/=Ev\ - G
| style="text-align:center;" | diaschismic &amp; semaphore
| | diaschismic &amp; semaphore


^1 = 81/80
^1 = 81/80
Line 502: Line 509:
/1 = 64/63
/1 = 64/63
|-
|-
| style="text-align:center;" |  
| |  
| style="text-align:center;" | "
| | "
| style="text-align:center;" | ^^d2,
| | ^^d2,


\\A1,
\\A1,


^^\\m2
^^\\m2
| style="text-align:center;" | C^^ = B#
| | C^^ = B#


C// = C#
C// = C#


C^^\\ = B
C^^\\ = B
| style="text-align:center;" | P8/2 = vA4 = ^d5
| | P8/2 = vA4 = ^d5


P5/2 = /m3 = \M3
P5/2 = /m3 = \M3


P4/2 =v/M2 = ^\m3
P4/2 =v/M2 = ^\m3
| style="text-align:center;" | C - F#v=Gb^ - C,
| | C - F#v=Gb^ - C,


C - Eb/=E\ - G,
C - Eb/=E\ - G,


C - Dv/=Eb^\ - F
C - Dv/=Eb^\ - F
| style="text-align:center;" | diaschismic and mohajira
| | diaschismic and mohajira


^1 = 81/80
^1 = 81/80
Line 538: Line 545:
! |  
! |  
|-
|-
| style="text-align:center;" | 6
| | 6
| style="text-align:center;" | (P8/3, P5)
| | (P8/3, P5)


third-8ve
third-8ve
| style="text-align:center;" | ^<span style="vertical-align: super;">3</span>d2
| | ^<span style="vertical-align: super;">3</span>d2
| style="text-align:center;" | C^<span style="vertical-align: super;">3 </span> = B#
| | C^<span style="vertical-align: super;">3 </span> = B#
| style="text-align:center;" | P8/3 = vM3 = ^^d4
| | P8/3 = vM3 = ^^d4
| style="text-align:center;" | C - Ev - Ab^ - C
| | C - Ev - Ab^ - C
| style="text-align:center;" | augmented
| | augmented


^1 = 81/80
^1 = 81/80
|-
|-
| style="text-align:center;" | 7
| | 7
| style="text-align:center;" | (P8, P4/3)
| | (P8, P4/3)


third-4th
third-4th
| style="text-align:center;" | v<span style="vertical-align: super;">3</span>A1
| | v<span style="vertical-align: super;">3</span>A1
| style="text-align:center;" | C^<span style="vertical-align: super;">3</span> = C#
| | C^<span style="vertical-align: super;">3</span> = C#
| style="text-align:center;" | P4/3 = vM2 = ^^m2
| | P4/3 = vM2 = ^^m2
| style="text-align:center;" | C - Dv - Eb^ - F
| | C - Dv - Eb^ - F
| style="text-align:center;" | porcupine
| | porcupine


^1 = 81/80
^1 = 81/80
|-
|-
| style="text-align:center;" | 8
| | 8
| style="text-align:center;" | (P8, P5/3)
| | (P8, P5/3)


third-5th
third-5th
| style="text-align:center;" | v<span style="vertical-align: super;">3</span>m2
| | v<span style="vertical-align: super;">3</span>m2
| style="text-align:center;" | C^<span style="vertical-align: super;">3 </span> = Db
| | C^<span style="vertical-align: super;">3 </span> = Db
| style="text-align:center;" | P5/3 = ^M2 = vvm3
| | P5/3 = ^M2 = vvm3
| style="text-align:center;" | C - D^ - Fv - G
| | C - D^ - Fv - G
| style="text-align:center;" | slendric
| | slendric


^1 = 64/63
^1 = 64/63
|-
|-
| style="text-align:center;" | 9
| | 9
| style="text-align:center;" | (P8, P11/3)
| | (P8, P11/3)


third-11th
third-11th
| style="text-align:center;" | ^<span style="vertical-align: super;">3</span>dd2
| | ^<span style="vertical-align: super;">3</span>dd2
| style="text-align:center;" | C^<span style="vertical-align: super;">3</span> = B##
| | C^<span style="vertical-align: super;">3</span> = B##
| style="text-align:center;" | P11/3 = vA4 = ^^dd5
| | P11/3 = vA4 = ^^dd5
| style="text-align:center;" | C - F#v - Cb^ - F
| | C - F#v - Cb^ - F
| style="text-align:center;" | satrilu, if 11/8 = A4
| | satrilu, if 11/8 = A4


^1 = 729/704
^1 = 729/704
|-
|-
| style="text-align:center;" |  
| |  
| style="text-align:center;" | "
| | "
| style="text-align:center;" | v<span style="vertical-align: super;">3</span>M2
| | v<span style="vertical-align: super;">3</span>M2
| style="text-align:center;" | C^<span style="vertical-align: super;">3 </span>= D
| | C^<span style="vertical-align: super;">3 </span>= D
| style="text-align:center;" | P11/3 = ^4 = vv5
| | P11/3 = ^4 = vv5
| style="text-align:center;" | C - F^ - Cv - F
| | C - F^ - Cv - F
| style="text-align:center;" | satrilu, if 11/8 = P4
| | satrilu, if 11/8 = P4


^1 = 33/32
^1 = 33/32
|-
|-
| style="text-align:center;" | 10
| | 10
| style="text-align:center;" | (P8/3, P4/2)
| | (P8/3, P4/2)


third-8ve, half-4th
third-8ve, half-4th
| style="text-align:center;" | v<span style="vertical-align: super;">6</span>A2
| | v<span style="vertical-align: super;">6</span>A2
| style="text-align:center;" | C^<span style="vertical-align: super;">6</span> = D#
| | C^<span style="vertical-align: super;">6</span> = D#
| style="text-align:center;" | P8/3 = ^^m3 = v<span style="vertical-align: super;">4</span>A4
| | P8/3 = ^^m3 = v<span style="vertical-align: super;">4</span>A4


P4/2 = ^<span style="vertical-align: super;">3</span>m2 = v<span style="vertical-align: super;">3</span>M3
P4/2 = ^<span style="vertical-align: super;">3</span>m2 = v<span style="vertical-align: super;">3</span>M3
| style="text-align:center;" | C - Eb^^ - Avv - C
| | C - Eb^^ - Avv - C


C - Db^<span style="vertical-align: super;">3</span>=Ev<span style="vertical-align: super;">3</span> - F
C - Db^<span style="vertical-align: super;">3</span>=Ev<span style="vertical-align: super;">3</span> - F
| style="text-align:center;" | tribilo, if 11/8 = P4
| | tribilo, if 11/8 = P4


^1 = 33/32
^1 = 33/32
|-
|-
| style="text-align:center;" |  
| |  
| style="text-align:center;" | "
| | "
| style="text-align:center;" | ^<span style="vertical-align: super;">3</span>d2,
| | ^<span style="vertical-align: super;">3</span>d2,


\\m2
\\m2
| style="text-align:center;" | C^<span style="vertical-align: super;">3</span> = B#
| | C^<span style="vertical-align: super;">3</span> = B#


C// = Db
C// = Db
| style="text-align:center;" | P8/3 = vM3 = ^^d4
| | P8/3 = vM3 = ^^d4


P4/2 = /M2 = \m3
P4/2 = /M2 = \m3
| style="text-align:center;" | C - Ev - Ab^ - C
| | C - Ev - Ab^ - C


C - D/=Eb\ - F
C - D/=Eb\ - F
| style="text-align:center;" | triforce (128/125 &amp; 49/48)
| | triforce (128/125 &amp; 49/48)


^1 = 81/80, /1 = 64/63
^1 = 81/80, /1 = 64/63
|-
|-
| style="text-align:center;" | 11
| | 11
| style="text-align:center;" | (P8/3, P5/2)
| | (P8/3, P5/2)


third-8ve, half-5th
third-8ve, half-5th
| style="text-align:center;" | ^<span style="vertical-align: super;">3</span>d2
| | ^<span style="vertical-align: super;">3</span>d2


\\A1
\\A1
| style="text-align:center;" | C^<span style="vertical-align: super;">3</span> = B#
| | C^<span style="vertical-align: super;">3</span> = B#


C// = C#
C// = C#
| style="text-align:center;" | P8/3 = vM3 = ^^d4
| | P8/3 = vM3 = ^^d4


P5/2 = /m3 = \M3
P5/2 = /m3 = \M3
| style="text-align:center;" | C - Ev - Ab^ - C
| | C - Ev - Ab^ - C


C - Eb/=E\ - G
C - Eb/=E\ - G
| style="text-align:center;" | satribizo
| | satribizo


^1 = 49/48, /1 = 343/324
^1 = 49/48, /1 = 343/324
|-
|-
| style="text-align:center;" | 12
| | 12
| style="text-align:center;" | (P8/2, P4/3)
| | (P8/2, P4/3)


half-8ve, third-4th
half-8ve, third-4th
| style="text-align:center;" | ^^d2
| | ^^d2


\<span style="vertical-align: super;">3</span>A1
\<span style="vertical-align: super;">3</span>A1
| style="text-align:center;" | C^^ = Dbb
| | C^^ = Dbb


C/<span style="vertical-align: super;">3</span> = C#
C/<span style="vertical-align: super;">3</span> = C#
| style="text-align:center;" | P8/2 = vA4 = ^d5
| | P8/2 = vA4 = ^d5


P4/3 = \M2 = //m2
P4/3 = \M2 = //m2
| style="text-align:center;" | C - F#v=Gb^ - C
| | C - F#v=Gb^ - C


C - D\ - Eb/ - F
C - D\ - Eb/ - F
| style="text-align:center;" | latribiru
| | latribiru


^1 = 1029/1024, /1 = 49/48
^1 = 1029/1024, /1 = 49/48
|-
|-
| style="text-align:center;" | 13
| | 13
| style="text-align:center;" | (P8/2, P5/3)
| | (P8/2, P5/3)


half-8ve, third-5th
half-8ve, third-5th
| style="text-align:center;" | ^<span style="vertical-align: super;">6</span>d<span style="vertical-align: super;">3</span>2
| | ^<span style="vertical-align: super;">6</span>d<span style="vertical-align: super;">3</span>2
| style="text-align:center;" | C^<span style="vertical-align: super;">6</span> = B#<span style="vertical-align: super;">3</span>
| | C^<span style="vertical-align: super;">6</span> = B#<span style="vertical-align: super;">3</span>
| style="text-align:center;" | P8/2 = v<span style="vertical-align: super;">3</span>AA4 = ^<span style="vertical-align: super;">3</span>dd5
| | P8/2 = v<span style="vertical-align: super;">3</span>AA4 = ^<span style="vertical-align: super;">3</span>dd5


P5/3 = vvA2 = ^<span style="vertical-align: super;">4</span>dd3
P5/3 = vvA2 = ^<span style="vertical-align: super;">4</span>dd3
| style="text-align:center;" | C - F<span style="vertical-align: super;">x</span>v<span style="vertical-align: super;">3</span>=Gbb^<span style="vertical-align: super;">3</span> C
| | C - F<span style="vertical-align: super;">x</span>v<span style="vertical-align: super;">3</span>=Gbb^<span style="vertical-align: super;">3</span> C


C - D#vv - Fb^^ - G
C - D#vv - Fb^^ - G
| style="text-align:center;" | lartribiyo
| | lartribiyo


^1 = 81/80
^1 = 81/80
|-
|-
| style="text-align:center;" |  
| |  
| style="text-align:center;" | "
| | "
| style="text-align:center;" | ^^d2,
| | ^^d2,


\\\m2
\\\m2
| style="text-align:center;" | C^^ = B#
| | C^^ = B#


C/// = Db
C/// = Db
| style="text-align:center;" | P8/2 = vA4 = ^d5
| | P8/2 = vA4 = ^d5


P5/3 = /M2 = \\m3
P5/3 = /M2 = \\m3
| style="text-align:center;" | C - F#v=Gb^ - C
| | C - F#v=Gb^ - C


C - D/ - F\ - G
C - D/ - F\ - G
| style="text-align:center;" | lemba (50/49 &amp; 1029/1024)
| | lemba (50/49 &amp; 1029/1024)


^1 = (10,-6,1,-1), /1 = 64/63
^1 = (10,-6,1,-1), /1 = 64/63
|-
|-
| style="text-align:center;" | 14
| | 14
| style="text-align:center;" | (P8/2, P11/3)
| | (P8/2, P11/3)


half-8ve, third-11th
half-8ve, third-11th
| style="text-align:center;" | v<span style="vertical-align: super;">6</span>M2
| | v<span style="vertical-align: super;">6</span>M2
| style="text-align:center;" | C^<span style="vertical-align: super;">6</span> = D
| | C^<span style="vertical-align: super;">6</span> = D
| style="text-align:center;" | P8/2 = ^<span style="vertical-align: super;">3</span>4 = v<span style="vertical-align: super;">3</span>5
| | P8/2 = ^<span style="vertical-align: super;">3</span>4 = v<span style="vertical-align: super;">3</span>5


P11/3 = ^^4 = v<span style="vertical-align: super;">4</span>5
P11/3 = ^^4 = v<span style="vertical-align: super;">4</span>5
| style="text-align:center;" | C - F^<span style="vertical-align: super;">3</span>=Gv<span style="vertical-align: super;">3</span> - C
| | C - F^<span style="vertical-align: super;">3</span>=Gv<span style="vertical-align: super;">3</span> - C


C - F^^ - Cvv - F
C - F^^ - Cvv - F
| style="text-align:center;" | latribilo, if 11/8 = P4
| | latribilo, if 11/8 = P4


^1 = 33/32
^1 = 33/32
|-
|-
| style="text-align:center;" | 15
| | 15
| style="text-align:center;" | (P8/3, P4/3)
| | (P8/3, P4/3)


third-
third-


everything
everything
| style="text-align:center;" | v<span style="vertical-align: super;">3</span>d2,
| | v<span style="vertical-align: super;">3</span>d2,


\<span style="vertical-align: super;">3</span>A1
\<span style="vertical-align: super;">3</span>A1
| style="text-align:center;" | C^<span style="vertical-align: super;">3 </span> = Dbb
| | C^<span style="vertical-align: super;">3 </span> = Dbb


C/3 = C#
C/3 = C#
| style="text-align:center;" | P8/3 = ^M3 = vvd4
| | P8/3 = ^M3 = vvd4


P4/3 = \M2 = //m2
P4/3 = \M2 = //m2


P5/3 = v/M2
P5/3 = v/M2
| style="text-align:center;" | C - E^ - Abv - C
| | C - E^ - Abv - C


C - D\ - Eb/ - F
C - D\ - Eb/ - F


C - Dv/ - F^\ - G
C - Dv/ - F^\ - G
| style="text-align:center;" | porcupine &amp; triru
| | porcupine &amp; triru


^1 = 64/63
^1 = 64/63
Line 748: Line 755:
/1 = 81/80
/1 = 81/80
|-
|-
| style="text-align:center;" |  
| |  
| style="text-align:center;" | "
| | "
| style="text-align:center;" | ^<span style="vertical-align: super;">3</span>d2,
| | ^<span style="vertical-align: super;">3</span>d2,


\<span style="vertical-align: super;">3</span>m2
\<span style="vertical-align: super;">3</span>m2
| style="text-align:center;" | C^<span style="vertical-align: super;">3 </span> = B#
| | C^<span style="vertical-align: super;">3 </span> = B#


C/<span style="vertical-align: super;">3</span> = Db
C/<span style="vertical-align: super;">3</span> = Db
| style="text-align:center;" | P8/3 = vM3 = ^^d4
| | P8/3 = vM3 = ^^d4


P5/3 = /M2 = \\m3
P5/3 = /M2 = \\m3


P4/3 = v\M2
P4/3 = v\M2
| style="text-align:center;" | C - Ev - Ab^ - C
| | C - Ev - Ab^ - C


C - D/ - F\ - G
C - D/ - F\ - G


C - Dv\ - Eb^/ - F
C - Dv\ - Eb^/ - F
| style="text-align:center;" | augmented &amp; latrizo
| | augmented &amp; latrizo


^1 = 81/80
^1 = 81/80
Line 772: Line 779:
/1 = 64/63
/1 = 64/63
|-
|-
| style="text-align:center;" |  
| |  
| style="text-align:center;" | "
| | "
| style="text-align:center;" | v<span style="vertical-align: super;">3</span>A1,
| | v<span style="vertical-align: super;">3</span>A1,


\<span style="vertical-align: super;">3</span>m2
\<span style="vertical-align: super;">3</span>m2
| style="text-align:center;" | C^<span style="vertical-align: super;">3 </span> = C#
| | C^<span style="vertical-align: super;">3 </span> = C#


C/3 = Db
C/3 = Db
| style="text-align:center;" | P4/3 = vM2 = ^^m2
| | P4/3 = vM2 = ^^m2


P5/3 = /M2 = \\m3
P5/3 = /M2 = \\m3


P8/3 = v/M3
P8/3 = v/M3
| style="text-align:center;" | C - Dv - Eb^ - F
| | C - Dv - Eb^ - F


C - D/ - F\ - G
C - D/ - F\ - G


C - Ev/ - Ab^\ - C
C - Ev/ - Ab^\ - C
| style="text-align:center;" | triyo &amp; latrizo
| | triyo &amp; latrizo


^1 = 81/80
^1 = 81/80
Line 804: Line 811:
! |  
! |  
|-
|-
| style="text-align:center;" | 16
| | 16
| style="text-align:center;" | (P8/4, P5)
| | (P8/4, P5)
| style="text-align:center;" | ^<span style="vertical-align: super;">4</span>d2
| | ^<span style="vertical-align: super;">4</span>d2
| style="text-align:center;" | C^<span style="vertical-align: super;">4</span> = B#
| | C^<span style="vertical-align: super;">4</span> = B#
| style="text-align:center;" | P8/4 = vm3 = ^<span style="vertical-align: super;">3</span>A2
| | P8/4 = vm3 = ^<span style="vertical-align: super;">3</span>A2
| style="text-align:center;" | C Ebv Gbvv=F#^^ A^ C
| | C Ebv Gbvv=F#^^ A^ C
| style="text-align:center;" | diminished
| | diminished
|-
|-
| style="text-align:center;" | 17
| | 17
| style="text-align:center;" | (P8, P4/4)
| | (P8, P4/4)
| style="text-align:center;" | ^<span style="vertical-align: super;">4</span>dd2
| | ^<span style="vertical-align: super;">4</span>dd2
| style="text-align:center;" | C^<span style="vertical-align: super;">4</span> = B##
| | C^<span style="vertical-align: super;">4</span> = B##
| style="text-align:center;" | P4/4 = ^m2 = v<span style="vertical-align: super;">3</span>AA1
| | P4/4 = ^m2 = v<span style="vertical-align: super;">3</span>AA1
| style="text-align:center;" | C Db^ Ebb^^=D#vv Ev F
| | C Db^ Ebb^^=D#vv Ev F
| style="text-align:center;" | negri
| | negri
|-
|-
| style="text-align:center;" | 18
| | 18
| style="text-align:center;" | (P8, P5/4)
| | (P8, P5/4)
| style="text-align:center;" | v<span style="vertical-align: super;">4</span>A1
| | v<span style="vertical-align: super;">4</span>A1
| style="text-align:center;" | C^<span style="vertical-align: super;">4</span> = C#
| | C^<span style="vertical-align: super;">4</span> = C#
| style="text-align:center;" | P5/4 = vM2 = ^<span style="vertical-align: super;">3</span>m2
| | P5/4 = vM2 = ^<span style="vertical-align: super;">3</span>m2
| style="text-align:center;" | C Dv Evv=Eb^^ F^ G
| | C Dv Evv=Eb^^ F^ G
| style="text-align:center;" | tetracot
| | tetracot
|-
|-
| style="text-align:center;" | 19
| | 19
| style="text-align:center;" | (P8, P11/4)
| | (P8, P11/4)
| style="text-align:center;" | v<span style="vertical-align: super;">4</span>dd3
| | v<span style="vertical-align: super;">4</span>dd3
| style="text-align:center;" | C^<span style="vertical-align: super;">4</span> = Eb<span style="vertical-align: super;">3</span>
| | C^<span style="vertical-align: super;">4</span> = Eb<span style="vertical-align: super;">3</span>
| style="text-align:center;" | P11/4 = ^M3 = v<span style="vertical-align: super;">3</span>dd5
| | P11/4 = ^M3 = v<span style="vertical-align: super;">3</span>dd5
| style="text-align:center;" | C E^ G#^^ Dbv F
| | C E^ G#^^ Dbv F
| style="text-align:center;" | squares
| | squares
|-
|-
| style="text-align:center;" | 20
| | 20
| style="text-align:center;" | (P8, P12/4)
| | (P8, P12/4)
| style="text-align:center;" | v<span style="vertical-align: super;">4</span>m2
| | v<span style="vertical-align: super;">4</span>m2
| style="text-align:center;" | C^<span style="vertical-align: super;">4</span> = Db
| | C^<span style="vertical-align: super;">4</span> = Db
| style="text-align:center;" | P12/4 = v4 = ^<span style="vertical-align: super;">3</span>M3
| | P12/4 = v4 = ^<span style="vertical-align: super;">3</span>M3
| style="text-align:center;" | C Fv Bbvv=A^^ D^ G
| | C Fv Bbvv=A^^ D^ G
| style="text-align:center;" | vulture
| | vulture
|-
|-
| style="text-align:center;" |  
| |  
| style="text-align:center;" | etc.
| | etc.
| style="text-align:center;" |  
| |  
| style="text-align:center;" |  
| |  
| style="text-align:center;" |  
| |  
| style="text-align:center;" |  
| |  
| style="text-align:center;" |  
| |  
|}
|}
The disadvantage to the lexicographical ordering above is that more complex pergens are listed before simpler ones, e.g. half-8ve third-5th before quarter-5th. However, the former can arise from two simple commas, so arguably it isn't particularly complex.
The disadvantage to the lexicographical ordering above is that more complex pergens are listed before simpler ones, e.g. half-8ve third-5th before quarter-5th. However, the former can arise from two simple commas, so arguably it isn't particularly complex.
Line 862: Line 869:
Heptatonic 5th-based notation is only possible if the 5th ranges from 600¢ to 720¢. For every bare enharmonic, the following table shows in what parts of this range this interval should be upped or downed. The tipping point edo is simply the 3-exponent of the bare enharmonic.
Heptatonic 5th-based notation is only possible if the 5th ranges from 600¢ to 720¢. For every bare enharmonic, the following table shows in what parts of this range this interval should be upped or downed. The tipping point edo is simply the 3-exponent of the bare enharmonic.


{| class="wikitable"
{| class="wikitable" style="text-align:center;"  
|-
|-
! colspan="2" | bare enharmonic
! colspan="2" | bare enharmonic
Line 876: Line 883:
! | if the 5th is just
! | if the 5th is just
|-
|-
| style="text-align:center;" | M2
| | M2
| style="text-align:center;" | C - D
| | C - D
| style="text-align:center;" | 2
| | 2
| style="text-align:center;" | 2-edo
| | 2-edo
| style="text-align:center;" | 600¢
| | 600¢
| style="text-align:center;" | none
| | none
| style="text-align:center;" | all
| | all
| style="text-align:center;" | downed
| | downed
|-
|-
| style="text-align:center;" | m3
| | m3
| style="text-align:center;" | C - Eb
| | C - Eb
| style="text-align:center;" | -3
| | -3
| style="text-align:center;" | 3-edo
| | 3-edo
| style="text-align:center;" | 800¢
| | 800¢
| style="text-align:center;" | none
| | none
| style="text-align:center;" | all
| | all
| style="text-align:center;" | downed
| | downed
|-
|-
| style="text-align:center;" | m2
| | m2
| style="text-align:center;" | C - Db
| | C - Db
| style="text-align:center;" | -5
| | -5
| style="text-align:center;" | 5-edo
| | 5-edo
| style="text-align:center;" | 720¢
| | 720¢
| style="text-align:center;" | none
| | none
| style="text-align:center;" | all
| | all
| style="text-align:center;" | downed
| | downed
|-
|-
| style="text-align:center;" | A1
| | A1
| style="text-align:center;" | C - C#
| | C - C#
| style="text-align:center;" | 7
| | 7
| style="text-align:center;" | 7-edo
| | 7-edo
| style="text-align:center;" | ~686¢
| | ~686¢
| style="text-align:center;" | 600-686¢
| | 600-686¢
| style="text-align:center;" | 686¢-720¢
| | 686¢-720¢
| style="text-align:center;" | downed
| | downed
|-
|-
| style="text-align:center;" | d2
| | d2
| style="text-align:center;" | C - Dbb
| | C - Dbb
| style="text-align:center;" | -12
| | -12
| style="text-align:center;" | 12-edo
| | 12-edo
| style="text-align:center;" | 700¢
| | 700¢
| style="text-align:center;" | 700-720¢
| | 700-720¢
| style="text-align:center;" | 600-700¢
| | 600-700¢
| style="text-align:center;" | upped
| | upped
|-
|-
| style="text-align:center;" | dd3
| | dd3
| style="text-align:center;" | C - Eb<span style="vertical-align: super;">3</span>
| | C - Eb<span style="vertical-align: super;">3</span>
| style="text-align:center;" | -17
| | -17
| style="text-align:center;" | 17-edo
| | 17-edo
| style="text-align:center;" | ~706¢
| | ~706¢
| style="text-align:center;" | 706-720¢
| | 706-720¢
| style="text-align:center;" | 600-706¢
| | 600-706¢
| style="text-align:center;" | downed
| | downed
|-
|-
| style="text-align:center;" | dd2
| | dd2
| style="text-align:center;" | C - Db<span style="vertical-align: super;">3</span>
| | C - Db<span style="vertical-align: super;">3</span>
| style="text-align:center;" | -19
| | -19
| style="text-align:center;" | 19-edo
| | 19-edo
| style="text-align:center;" | ~695¢
| | ~695¢
| style="text-align:center;" | 695-720¢
| | 695-720¢
| style="text-align:center;" | 600-695¢
| | 600-695¢
| style="text-align:center;" | upped
| | upped
|-
|-
| style="text-align:center;" | d<span style="vertical-align: super;">3</span>4
| | d<span style="vertical-align: super;">3</span>4
| style="text-align:center;" | C - Fb<span style="vertical-align: super;">3</span>
| | C - Fb<span style="vertical-align: super;">3</span>
| style="text-align:center;" | -22
| | -22
| style="text-align:center;" | 22-edo
| | 22-edo
| style="text-align:center;" | ~709¢
| | ~709¢
| style="text-align:center;" | 709-720¢
| | 709-720¢
| style="text-align:center;" | 600-709¢
| | 600-709¢
| style="text-align:center;" | downed
| | downed
|-
|-
| style="text-align:center;" | d<span style="vertical-align: super;">3</span>2
| | d<span style="vertical-align: super;">3</span>2
| style="text-align:center;" | C - Db<span style="vertical-align: super;">4</span>
| | C - Db<span style="vertical-align: super;">4</span>
| style="text-align:center;" | -26
| | -26
| style="text-align:center;" | 26-edo
| | 26-edo
| style="text-align:center;" | ~692¢
| | ~692¢
| style="text-align:center;" | 692-720¢
| | 692-720¢
| style="text-align:center;" | 600-692¢
| | 600-692¢
| style="text-align:center;" | upped
| | upped
|-
|-
| style="text-align:center;" | d<span style="vertical-align: super;">4</span>4
| | d<span style="vertical-align: super;">4</span>4
| style="text-align:center;" | C - Fb<span style="vertical-align: super;">4</span>
| | C - Fb<span style="vertical-align: super;">4</span>
| style="text-align:center;" | -29
| | -29
| style="text-align:center;" | 29-edo
| | 29-edo
| style="text-align:center;" | ~703¢
| | ~703¢
| style="text-align:center;" | 703-720¢
| | 703-720¢
| style="text-align:center;" | 600-703¢
| | 600-703¢
| style="text-align:center;" | downed
| | downed
|-
|-
| style="text-align:center;" | d<span style="vertical-align: super;">4</span>3
| | d<span style="vertical-align: super;">4</span>3
| style="text-align:center;" | C - Eb<span style="vertical-align: super;">5</span>
| | C - Eb<span style="vertical-align: super;">5</span>
| style="text-align:center;" | -31
| | -31
| style="text-align:center;" | 31-edo
| | 31-edo
| style="text-align:center;" | ~697¢
| | ~697¢
| style="text-align:center;" | 697-720¢
| | 697-720¢
| style="text-align:center;" | 600-697¢
| | 600-697¢
| style="text-align:center;" | upped
| | upped
|-
|-
| style="text-align:center;" | etc.
| | etc.
| style="text-align:center;" |  
| |  
| style="text-align:center;" |  
| |  
| style="text-align:center;" |  
| |  
| style="text-align:center;" |  
| |  
| style="text-align:center;" |  
| |  
| style="text-align:center;" |  
| |  
| style="text-align:center;" |  
| |  
|}
|}
 
 
=Further Discussion=
=Further Discussion=


==Naming very large intervals==
==Naming very large intervals==
Line 1,025: Line 1,032:
The following table shows the secondary splits for all pergens up to the third-splits. A split interval is only included if it falls in the range from d5 to A5 on the genchain of 5ths, others are too remote. For convenience, naturally occurring splits are listed too, under "all pergens". (P8/3, P4/2) has all the secondary splits that (P8/3, P5) and (P8, P4/2) have, plus additional ones.
The following table shows the secondary splits for all pergens up to the third-splits. A split interval is only included if it falls in the range from d5 to A5 on the genchain of 5ths, others are too remote. For convenience, naturally occurring splits are listed too, under "all pergens". (P8/3, P4/2) has all the secondary splits that (P8/3, P5) and (P8, P4/2) have, plus additional ones.


{| class="wikitable"
{| class="wikitable" style="text-align:center;"  
|-
|-
! colspan="2" | pergen
! colspan="2" | pergen
! | secondary splits of a 12th or less
! | secondary splits of a 12th or less
|-
|-
| colspan="2" style="text-align:center;" | all pergens
| colspan="2" | all pergens
| style="text-align:center;" | M3/2, A4/3, d5/2, A5/4, m7/2, M9/2, m10/3, A11/2
| | M3/2, A4/3, d5/2, A5/4, m7/2, M9/2, m10/3, A11/2
|-
|-
! colspan="2" | half-splits
! colspan="2" | half-splits
! |  
! |  
|-
|-
| style="text-align:center;" | (P8/2, P5)
| | (P8/2, P5)
| style="text-align:center;" | half-8ve
| | half-8ve
| style="text-align:center;" | M2/2, M3/4, A4/6, A5/8, m6/2, M10/2, d12/2, A12/2
| | M2/2, M3/4, A4/6, A5/8, m6/2, M10/2, d12/2, A12/2
|-
|-
| style="text-align:center;" | (P8, P4/2)
| | (P8, P4/2)
| style="text-align:center;" | half-4th
| | half-4th
| style="text-align:center;" | m2/2, M6/2, m7/4, A8/2, m10/6, A11/4, P12/2
| | m2/2, M6/2, m7/4, A8/2, m10/6, A11/4, P12/2
|-
|-
| style="text-align:center;" | (P8, P5/2)
| | (P8, P5/2)
| style="text-align:center;" | half-5th
| | half-5th
| style="text-align:center;" | A1/2, m3/2, M7/2, m9/2, P11/2
| | A1/2, m3/2, M7/2, m9/2, P11/2
|-
|-
| style="text-align:center;" | (P8/2, P4/2)
| | (P8/2, P4/2)
| style="text-align:center;" | half-everything
| | half-everything
| style="text-align:center;" | every 3-limit interval is split twice as much as before
| | every 3-limit interval is split twice as much as before
|-
|-
! colspan="2" | third-splits
! colspan="2" | third-splits
! |  
! |  
|-
|-
| style="text-align:center;" | (P8/3, P5)
| | (P8/3, P5)
| style="text-align:center;" | third-8ve
| | third-8ve
| style="text-align:center;" | m3/3, M6/3, d5/6, A11/3, d12/3
| | m3/3, M6/3, d5/6, A11/3, d12/3
|-
|-
| style="text-align:center;" | (P8, P4/3)
| | (P8, P4/3)
| style="text-align:center;" | third-4th
| | third-4th
| style="text-align:center;" | A1/3, m7/6, M7/3, m10/9, M10/3
| | A1/3, m7/6, M7/3, m10/9, M10/3
|-
|-
| style="text-align:center;" | (P8, P5/3)
| | (P8, P5/3)
| style="text-align:center;" | third-5th
| | third-5th
| style="text-align:center;" | m2/3, m6/3, M9/6, A8/3, A12/3
| | m2/3, m6/3, M9/6, A8/3, A12/3
|-
|-
| style="text-align:center;" | (P8, P11/3)
| | (P8, P11/3)
| style="text-align:center;" | third-11th
| | third-11th
| style="text-align:center;" | M2/3, M3/6, A4/9, A5/12, m9/3, P12/3
| | M2/3, M3/6, A4/9, A5/12, m9/3, P12/3
|-
|-
| style="text-align:center;" | (P8/3, P4/2)
| | (P8/3, P4/2)
| style="text-align:center;" | third-8ve half-4th
| | third-8ve half-4th
| style="text-align:center;" | third-8ve splits, half-4th splits, M6/6, m10/6, A11/12
| | third-8ve splits, half-4th splits, M6/6, m10/6, A11/12
|-
|-
| style="text-align:center;" | (P8/3, P5/2)
| | (P8/3, P5/2)
| style="text-align:center;" | third-8ve half-5th
| | third-8ve half-5th
| style="text-align:center;" | third-8ve splits, half-5th splits, m3/6, d5/12
| | third-8ve splits, half-5th splits, m3/6, d5/12
|-
|-
| style="text-align:center;" | (P8/2, P4/3)
| | (P8/2, P4/3)
| style="text-align:center;" | half-8ve third-4th
| | half-8ve third-4th
| style="text-align:center;" | half-8ve splits, third-4th splits, A4/6, M10/6
| | half-8ve splits, third-4th splits, A4/6, M10/6
|-
|-
| style="text-align:center;" | (P8/2, P5/3)
| | (P8/2, P5/3)
| style="text-align:center;" | half-8ve third-5th
| | half-8ve third-5th
| style="text-align:center;" | half-8ve splits, third-5th splits, m6/6, M9/6, A12/6
| | half-8ve splits, third-5th splits, m6/6, M9/6, A12/6
|-
|-
| style="text-align:center;" | (P8/2, P11/3)
| | (P8/2, P11/3)
| style="text-align:center;" | half-8ve third-11th
| | half-8ve third-11th
| style="text-align:center;" | half-8ve splits, third-11th splits, M2/6, M3/12, A4/18, A5/24
| | half-8ve splits, third-11th splits, M2/6, M3/12, A4/18, A5/24
|-
|-
| style="text-align:center;" | (P83, P4/3)
| | (P83, P4/3)
| style="text-align:center;" | third-everything
| | third-everything
| style="text-align:center;" | every 3-limit interval is split three times as much as before
| | every 3-limit interval is split three times as much as before
|}
|}


Line 1,294: Line 1,301:
The following table shows how to notate various 5-limit rank-2 temperaments. The sweet spot isn't precisely defined, thus all cents are approximate. The up symbol's ratio is always the mapping comma, or its inverse.
The following table shows how to notate various 5-limit rank-2 temperaments. The sweet spot isn't precisely defined, thus all cents are approximate. The up symbol's ratio is always the mapping comma, or its inverse.


{| class="wikitable"
{| class="wikitable" style="text-align:center;"  
|-
|-
! | <u>5-limit temperament</u>
! | <u>5-limit temperament</u>
Line 1,314: Line 1,321:
! | cents
! | cents
|-
|-
| style="text-align:center;" | meantone
| | meantone
| style="text-align:center;" | 81/80 = P1
| | 81/80 = P1
| style="text-align:center;" | c = -3¢ to -5¢
| | c = -3¢ to -5¢
| style="text-align:center;" | M3
| | M3
| style="text-align:center;" | C E G
| | C E G
| style="text-align:center;" | ---
| | ---
| style="text-align:center;" | ---
| | ---
| style="text-align:center;" | ---
| | ---
| style="text-align:center;" | ---
| | ---
| style="text-align:center;" | ---
| | ---
|-
|-
| style="text-align:center;" | mavila
| | mavila
| style="text-align:center;" | 135/128 = A1
| | 135/128 = A1
| style="text-align:center;" | c = -21¢ to -22¢
| | c = -21¢ to -22¢
| style="text-align:center;" | m3
| | m3
| style="text-align:center;" | C Eb G
| | C Eb G
| style="text-align:center;" | ^M3
| | ^M3
| style="text-align:center;" | C E^ G
| | C E^ G
| style="text-align:center;" | ^A1
| | ^A1
| style="text-align:center;" | 80/81 = d1
| | 80/81 = d1
| style="text-align:center;" | -100¢ - 7c = 47¢-54¢
| | -100¢ - 7c = 47¢-54¢
|-
|-
| style="text-align:center;" | lagu
| | lagu
| style="text-align:center;" | (-15,11,-1) = A1
| | (-15,11,-1) = A1
| style="text-align:center;" | c = -10¢ to -12¢
| | c = -10¢ to -12¢
| style="text-align:center;" | A3
| | A3
| style="text-align:center;" | C E# G
| | C E# G
| style="text-align:center;" | ^M3
| | ^M3
| style="text-align:center;" | C E^ G
| | C E^ G
| style="text-align:center;" | vA1
| | vA1
| style="text-align:center;" | 80/81 = A1
| | 80/81 = A1
| style="text-align:center;" | 100¢ + 7c = 26¢-30¢
| | 100¢ + 7c = 26¢-30¢
|-
|-
| style="text-align:center;" | schismic
| | schismic
| style="text-align:center;" | (-15,8,1) = -d2
| | (-15,8,1) = -d2
| style="text-align:center;" | c = 1.7¢ to 2.0¢
| | c = 1.7¢ to 2.0¢
| style="text-align:center;" | d4
| | d4
| style="text-align:center;" | C Fb G
| | C Fb G
| style="text-align:center;" | vM3
| | vM3
| style="text-align:center;" | C Ev G
| | C Ev G
| style="text-align:center;" | ^d2
| | ^d2
| style="text-align:center;" | 81/80 = -d2
| | 81/80 = -d2
| style="text-align:center;" | 12c = 20¢-24¢
| | 12c = 20¢-24¢
|-
|-
| style="text-align:center;" | lalagu
| | lalagu
| style="text-align:center;" | (-23,16,-1) = -d2
| | (-23,16,-1) = -d2
| style="text-align:center;" | c = -0.9¢ to -1.2¢
| | c = -0.9¢ to -1.2¢
| style="text-align:center;" | AA2
| | AA2
| style="text-align:center;" | C D## G
| | C D## G
| style="text-align:center;" | vM3
| | vM3
| style="text-align:center;" | C Ev G
| | C Ev G
| style="text-align:center;" | vd2
| | vd2
| style="text-align:center;" | 81/80 = d2
| | 81/80 = d2
| style="text-align:center;" | -12c = 10¢-15¢
| | -12c = 10¢-15¢
|-
|-
| style="text-align:center;" | father
| | father
| style="text-align:center;" | 16/15 = m2
| | 16/15 = m2
| style="text-align:center;" | c = 56¢ to 58¢
| | c = 56¢ to 58¢
| style="text-align:center;" | P4
| | P4
| style="text-align:center;" | C F G
| | C F G
| style="text-align:center;" | vM3
| | vM3
| style="text-align:center;" | C Ev G
| | C Ev G
| style="text-align:center;" | ^m2
| | ^m2
| style="text-align:center;" | 81/80 = -m2
| | 81/80 = -m2
| style="text-align:center;" | -100¢ + 5c = 180-190¢
| | -100¢ + 5c = 180-190¢
|-
|-
| style="text-align:center;" | superpyth
| | superpyth
| style="text-align:center;" | (12,-9,1) = m2
| | (12,-9,1) = m2
| style="text-align:center;" | c = 9¢ to 10¢
| | c = 9¢ to 10¢
| style="text-align:center;" | A2
| | A2
| style="text-align:center;" | C D# G
| | C D# G
| style="text-align:center;" | vM3
| | vM3
| style="text-align:center;" | C Ev G
| | C Ev G
| style="text-align:center;" | vm2
| | vm2
| style="text-align:center;" | 81/80 = m2
| | 81/80 = m2
| style="text-align:center;" | 100¢ - 5c = 50-55¢
| | 100¢ - 5c = 50-55¢
|}
|}
The schismic comma is a negative (i.e. descending) dim 2nd because it takes you down the scale, but up in pitch. The mavila temperament could perhaps be notated without ups and downs, because 5/4 is still a 3rd, and the 4:5:6 triad still looks like a triad.
The schismic comma is a negative (i.e. descending) dim 2nd because it takes you down the scale, but up in pitch. The mavila temperament could perhaps be notated without ups and downs, because 5/4 is still a 3rd, and the 4:5:6 triad still looks like a triad.
Line 1,401: Line 1,408:
Conventional notation is generated by the octave and the 5th, and the notation (not the tuning itself) is rank-2. Each additional pair of accidentals increases the notation's rank by one. Enharmonics are like commas in that each one reduces the notation's rank by one (assuming they are linearly independent). Obviously, the notation's rank must match the actual tuning's rank. Therefore the minimum number of enharmonics needed always equals the difference between the notation's rank and the tuning's rank. Examples:
Conventional notation is generated by the octave and the 5th, and the notation (not the tuning itself) is rank-2. Each additional pair of accidentals increases the notation's rank by one. Enharmonics are like commas in that each one reduces the notation's rank by one (assuming they are linearly independent). Obviously, the notation's rank must match the actual tuning's rank. Therefore the minimum number of enharmonics needed always equals the difference between the notation's rank and the tuning's rank. Examples:


{| class="wikitable"
{| class="wikitable" style="text-align:center;"  
|-
|-
! | tuning
! | tuning
Line 1,411: Line 1,418:
! | enharmonics
! | enharmonics
|-
|-
| style="text-align:center;" | 12-edo
| | 12-edo
| style="text-align:center;" | (P8/12)
| | (P8/12)
| style="text-align:center;" | rank-1
| | rank-1
| style="text-align:center;" | conventional
| | conventional
| style="text-align:center;" | rank-2
| | rank-2
| style="text-align:center;" | 1
| | 1
| style="text-align:center;" | E = d2
| | E = d2
|-
|-
| style="text-align:center;" | 19-edo
| | 19-edo
| style="text-align:center;" | (P8/19)
| | (P8/19)
| style="text-align:center;" | rank-1
| | rank-1
| style="text-align:center;" | conventional
| | conventional
| style="text-align:center;" | rank-2
| | rank-2
| style="text-align:center;" | 1
| | 1
| style="text-align:center;" | E = dd2
| | E = dd2
|-
|-
| style="text-align:center;" | 15-edo
| | 15-edo
| style="text-align:center;" | (P8/15)
| | (P8/15)
| style="text-align:center;" | rank-1
| | rank-1
| style="text-align:center;" | single-pair
| | single-pair
| style="text-align:center;" | rank-3
| | rank-3
| style="text-align:center;" | 2
| | 2
| style="text-align:center;" | E = m2, E' = v<span style="vertical-align: super;">3</span>A1 = v<span style="vertical-align: super;">3</span>M2
| | E = m2, E' = v<span style="vertical-align: super;">3</span>A1 = v<span style="vertical-align: super;">3</span>M2
|-
|-
| style="text-align:center;" | 24-edo
| | 24-edo
| style="text-align:center;" | (P8/24)
| | (P8/24)
| style="text-align:center;" | rank-1
| | rank-1
| style="text-align:center;" | single-pair
| | single-pair
| style="text-align:center;" | rank-3
| | rank-3
| style="text-align:center;" | 2
| | 2
| style="text-align:center;" | E = d2, E' = vvA1 = vvm2
| | E = d2, E' = vvA1 = vvm2
|-
|-
| style="text-align:center;" | pythagorean
| | pythagorean
| style="text-align:center;" | (P8, P5)
| | (P8, P5)
| style="text-align:center;" | rank-2
| | rank-2
| style="text-align:center;" | conventional
| | conventional
| style="text-align:center;" | rank-2
| | rank-2
| style="text-align:center;" | 0
| | 0
| style="text-align:center;" | ---
| | ---
|-
|-
| style="text-align:center;" | meantone
| | meantone
| style="text-align:center;" | (P8, P5)
| | (P8, P5)
| style="text-align:center;" | rank-2
| | rank-2
| style="text-align:center;" | conventional
| | conventional
| style="text-align:center;" | rank-2
| | rank-2
| style="text-align:center;" | 0
| | 0
| style="text-align:center;" | ---
| | ---
|-
|-
| style="text-align:center;" | srutal
| | srutal
| style="text-align:center;" | (P8/2, P5)
| | (P8/2, P5)
| style="text-align:center;" | rank-2
| | rank-2
| style="text-align:center;" | single-pair
| | single-pair
| style="text-align:center;" | rank-3
| | rank-3
| style="text-align:center;" | 1
| | 1
| style="text-align:center;" | E = ^^d2
| | E = ^^d2
|-
|-
| style="text-align:center;" | semaphore
| | semaphore
| style="text-align:center;" | (P8, P4/2)
| | (P8, P4/2)
| style="text-align:center;" | rank-2
| | rank-2
| style="text-align:center;" | single-pair
| | single-pair
| style="text-align:center;" | rank-3
| | rank-3
| style="text-align:center;" | 1
| | 1
| style="text-align:center;" | E = vvm2
| | E = vvm2
|-
|-
| style="text-align:center;" | decimal
| | decimal
| style="text-align:center;" | (P8/2, P4/2)
| | (P8/2, P4/2)
| style="text-align:center;" | rank-2
| | rank-2
| style="text-align:center;" | double-pair
| | double-pair
| style="text-align:center;" | rank-4
| | rank-4
| style="text-align:center;" | 2
| | 2
| style="text-align:center;" | E = vvd2, E' = \\m2 = ^^\\A1
| | E = vvd2, E' = \\m2 = ^^\\A1
|-
|-
| style="text-align:center;" | 5-limit JI
| | 5-limit JI
| style="text-align:center;" | (P8, P5, ^1)
| | (P8, P5, ^1)
| style="text-align:center;" | rank-3
| | rank-3
| style="text-align:center;" | single-pair
| | single-pair
| style="text-align:center;" | rank-3
| | rank-3
| style="text-align:center;" | 0
| | 0
| style="text-align:center;" | ---
| | ---
|-
|-
| style="text-align:center;" | marvel
| | marvel
| style="text-align:center;" | (P8, P5, ^1)
| | (P8, P5, ^1)
| style="text-align:center;" | rank-3
| | rank-3
| style="text-align:center;" | single-pair
| | single-pair
| style="text-align:center;" | rank-3
| | rank-3
| style="text-align:center;" | 0
| | 0
| style="text-align:center;" | ---
| | ---
|-
|-
| style="text-align:center;" | breedsmic
| | breedsmic
| style="text-align:center;" | (P8, P5/2, ^1)
| | (P8, P5/2, ^1)
| style="text-align:center;" | rank-3
| | rank-3
| style="text-align:center;" | double-pair
| | double-pair
| style="text-align:center;" | rank-4
| | rank-4
| style="text-align:center;" | 1
| | 1
| style="text-align:center;" | E = \\dd3
| | E = \\dd3
|-
|-
| style="text-align:center;" | 7-limit JI
| | 7-limit JI
| style="text-align:center;" | (P8, P5, ^1, /1)
| | (P8, P5, ^1, /1)
| style="text-align:center;" | rank-4
| | rank-4
| style="text-align:center;" | double-pair
| | double-pair
| style="text-align:center;" | rank-4
| | rank-4
| style="text-align:center;" | 0
| | 0
| style="text-align:center;" | ---
| | ---
|}
|}
When there is more than one enharmonic, the first one can be added to or subtracted from the 2nd one, to make an equivalent 2nd enharmonic.
When there is more than one enharmonic, the first one can be added to or subtracted from the 2nd one, to make an equivalent 2nd enharmonic.
Line 1,525: Line 1,532:
Some examples of 7-limit rank-3 temperaments:
Some examples of 7-limit rank-3 temperaments:


{| class="wikitable"
{| class="wikitable" style="text-align:center;"  
|-
|-
! | 7-limit temperament
! | 7-limit temperament
Line 1,537: Line 1,544:
! | enharmonic
! | enharmonic
|-
|-
| style="text-align:center;" | marvel
| | marvel
| style="text-align:center;" | 225/224
| | 225/224
| style="text-align:center;" | (P8, P5, ^1)
| | (P8, P5, ^1)
| style="text-align:center;" | rank-3 unsplit
| | rank-3 unsplit
| style="text-align:center;" | single-pair
| | single-pair
| style="text-align:center;" | P8
| | P8
| style="text-align:center;" | P5
| | P5
| style="text-align:center;" | ^1 = 81/80
| | ^1 = 81/80
| style="text-align:center;" | ---
| | ---
|-
|-
| style="text-align:center;" | "
| | "
| style="text-align:center;" | "
| | "
| style="text-align:center;" | "
| | "
| style="text-align:center;" | "
| | "
| style="text-align:center;" | double-pair
| | double-pair
| style="text-align:center;" | "
| | "
| style="text-align:center;" | "
| | "
| style="text-align:center;" | "
| | "
| style="text-align:center;" | ^^\d2
| | ^^\d2
|-
|-
| style="text-align:center;" | biruyo
| | biruyo
| style="text-align:center;" | 50/49
| | 50/49
| style="text-align:center;" | (P8/2, P5, ^1)
| | (P8/2, P5, ^1)
| style="text-align:center;" | rank-3 half-8ve
| | rank-3 half-8ve
| style="text-align:center;" | double-pair
| | double-pair
| style="text-align:center;" | v/A4 = 10/7
| | v/A4 = 10/7
| style="text-align:center;" | P5
| | P5
| style="text-align:center;" | ^1 = 81/80
| | ^1 = 81/80
| style="text-align:center;" | ^^\\d2
| | ^^\\d2
|-
|-
| style="text-align:center;" | trizogu
| | trizogu
| style="text-align:center;" | 1029/1000
| | 1029/1000
| style="text-align:center;" | (P8, P11/3, ^1)
| | (P8, P11/3, ^1)
| style="text-align:center;" | rank-3 third-11th
| | rank-3 third-11th
| style="text-align:center;" | double-pair
| | double-pair
| style="text-align:center;" | P8
| | P8
| style="text-align:center;" | ^\d5 = 7/5
| | ^\d5 = 7/5
| style="text-align:center;" | ^1 = 81/80
| | ^1 = 81/80
| style="text-align:center;" | ^^^\\\dd3
| | ^^^\\\dd3
|-
|-
| style="text-align:center;" | breedsmic
| | breedsmic
| style="text-align:center;" | 2401/2400
| | 2401/2400
| style="text-align:center;" | (P8, P5/2, ^1)
| | (P8, P5/2, ^1)
| style="text-align:center;" | rank-3 half-5th
| | rank-3 half-5th
| style="text-align:center;" | double-pair
| | double-pair
| style="text-align:center;" | P8
| | P8
| style="text-align:center;" | v//A2 = 60/49
| | v//A2 = 60/49
| style="text-align:center;" | /1 = 64/63
| | /1 = 64/63
| style="text-align:center;" | ^^\<span style="vertical-align: super;">4</span>dd3
| | ^^\<span style="vertical-align: super;">4</span>dd3
|-
|-
| style="text-align:center;" | demeter
| | demeter
| style="text-align:center;" | 686/675
| | 686/675
| style="text-align:center;" | (P8, P5, vm3/2)
| | (P8, P5, vm3/2)
| style="text-align:center;" | half-downminor-3rd
| | half-downminor-3rd
| style="text-align:center;" | double-pair
| | double-pair
| style="text-align:center;" | P8
| | P8
| style="text-align:center;" | P5
| | P5
| style="text-align:center;" | v/A1 = 15/14
| | v/A1 = 15/14
| style="text-align:center;" | ^^\\\dd3
| | ^^\\\dd3
|}
|}
If using single-pair notation, marvel is notated like 5-limit JI, but the 4:5:6:7 chord is spelled C - Ev - G - A#vv. If double-pair notation is used, /1 = 64/63, and the chord is spelled C - Ev - G - Bb\.
If using single-pair notation, marvel is notated like 5-limit JI, but the 4:5:6:7 chord is spelled C - Ev - G - A#vv. If double-pair notation is used, /1 = 64/63, and the chord is spelled C - Ev - G - Bb\.
Line 1,613: Line 1,620:
All possible rank-3 pergens can be listed, but the table is much longer than for rank-2 pergens. Here are all the half-split pergens:
All possible rank-3 pergens can be listed, but the table is much longer than for rank-2 pergens. Here are all the half-split pergens:


{| class="wikitable"
{| class="wikitable" style="text-align:center;"  
|-
|-
! | <u>pergen number</u>
! | <u>pergen number</u>
Line 1,622: Line 1,629:
! colspan="2" | 2.3.7 (^1 = 64/63)
! colspan="2" | 2.3.7 (^1 = 64/63)
|-
|-
| style="text-align:center;" | 1
| | 1
| style="text-align:center;" | (P8, P5, ^1)
| | (P8, P5, ^1)
| style="text-align:center;" | rank-3 unsplit
| | rank-3 unsplit
| style="text-align:center;" | same
| | same
| style="text-align:center;" | same
| | same
|-
|-
! | half-splits
! | half-splits
Line 1,634: Line 1,641:
! |  
! |  
|-
|-
| style="text-align:center;" | 2
| | 2
| style="text-align:center;" | (P8/2, P5, ^1)
| | (P8/2, P5, ^1)
| style="text-align:center;" | rank-3 half-8ve
| | rank-3 half-8ve
| style="text-align:center;" | same
| | same
| style="text-align:center;" | same
| | same
|-
|-
| style="text-align:center;" | 3
| | 3
| style="text-align:center;" | (P8, P4/2, ^1)
| | (P8, P4/2, ^1)
| style="text-align:center;" | rank-3 half-4th
| | rank-3 half-4th
| style="text-align:center;" | same
| | same
| style="text-align:center;" | same
| | same
|-
|-
| style="text-align:center;" | 4
| | 4
| style="text-align:center;" | (P8, P5/2, ^1)
| | (P8, P5/2, ^1)
| style="text-align:center;" | rank-3 half-5th
| | rank-3 half-5th
| style="text-align:center;" | same
| | same
| style="text-align:center;" | same
| | same
|-
|-
| style="text-align:center;" | 5
| | 5
| style="text-align:center;" | (P8/2, P4/2, ^1)
| | (P8/2, P4/2, ^1)
| style="text-align:center;" | rank-3 half-everything
| | rank-3 half-everything
| style="text-align:center;" | same
| | same
| style="text-align:center;" | same
| | same
|-
|-
| style="text-align:center;" | 6
| | 6
| style="text-align:center;" | (P8, P5, ^m3/2)
| | (P8, P5, ^m3/2)
| style="text-align:center;" | half-upminor-3rd
| | half-upminor-3rd
| style="text-align:center;" | (P8, P5, ^M2/2)
| | (P8, P5, ^M2/2)
| style="text-align:center;" | half-upmajor-2nd
| | half-upmajor-2nd
|-
|-
| style="text-align:center;" | 7
| | 7
| style="text-align:center;" | (P8, P5, vM3/2)
| | (P8, P5, vM3/2)
| style="text-align:center;" | half-downmajor-3rd
| | half-downmajor-3rd
| style="text-align:center;" | (P8, P5, vm3/2)
| | (P8, P5, vm3/2)
| style="text-align:center;" | half-downminor-3rd
| | half-downminor-3rd
|-
|-
| style="text-align:center;" | 8
| | 8
| style="text-align:center;" | (P8, P5, ^m6/2)
| | (P8, P5, ^m6/2)
| style="text-align:center;" | half-upminor-6th
| | half-upminor-6th
| style="text-align:center;" | (P8, P5, ^M6/2)
| | (P8, P5, ^M6/2)
| style="text-align:center;" | half-upmajor-6th
| | half-upmajor-6th
|-
|-
| style="text-align:center;" | 9
| | 9
| style="text-align:center;" | (P8, P5, vM6/2)
| | (P8, P5, vM6/2)
| style="text-align:center;" | half-downmajor-6th
| | half-downmajor-6th
| style="text-align:center;" | (P8, P5, vm7/2)
| | (P8, P5, vm7/2)
| style="text-align:center;" | half-downminor-7th
| | half-downminor-7th
|-
|-
| style="text-align:center;" | 10
| | 10
| style="text-align:center;" | (P8/2, P5, ^m3/2)
| | (P8/2, P5, ^m3/2)
| style="text-align:center;" | half-8ve half-upminor 3rd
| | half-8ve half-upminor 3rd
| style="text-align:center;" | (P8/2, P5, ^M2/2)
| | (P8/2, P5, ^M2/2)
| style="text-align:center;" | half-8ve half-upmajor-2nd
| | half-8ve half-upmajor-2nd
|-
|-
| style="text-align:center;" | 11
| | 11
| style="text-align:center;" | (P8/2, P5, vM3/2)
| | (P8/2, P5, vM3/2)
| style="text-align:center;" | half-8ve half-downmajor 3rd
| | half-8ve half-downmajor 3rd
| style="text-align:center;" | (P8/2, P5, vm3/2)
| | (P8/2, P5, vm3/2)
| style="text-align:center;" | etc.
| | etc.
|-
|-
| style="text-align:center;" | 12
| | 12
| style="text-align:center;" | (P8/2, P5, ^m6/2)
| | (P8/2, P5, ^m6/2)
| style="text-align:center;" | half-8ve half-upminor 6th
| | half-8ve half-upminor 6th
| style="text-align:center;" | (P8/2, P5, ^M6/2)
| | (P8/2, P5, ^M6/2)
| style="text-align:center;" |  
| |  
|-
|-
| style="text-align:center;" | 13
| | 13
| style="text-align:center;" | (P8/2, P5, vM6/2)
| | (P8/2, P5, vM6/2)
| style="text-align:center;" | half-8ve half-downmajor 6th
| | half-8ve half-downmajor 6th
| style="text-align:center;" | (P8/2, P5, vm7/2)
| | (P8/2, P5, vm7/2)
| style="text-align:center;" |  
| |  
|-
|-
| style="text-align:center;" | 14
| | 14
| style="text-align:center;" | (P8, P4/2, ^m3/2)
| | (P8, P4/2, ^m3/2)
| style="text-align:center;" | half-4th half-upminor 3rd
| | half-4th half-upminor 3rd
| style="text-align:center;" | (P8, P4/2, ^M2/2)
| | (P8, P4/2, ^M2/2)
| style="text-align:center;" |  
| |  
|-
|-
| style="text-align:center;" | 15
| | 15
| style="text-align:center;" | (P8, P4/2, vM3/2)
| | (P8, P4/2, vM3/2)
| style="text-align:center;" | etc.
| | etc.
| style="text-align:center;" | (P8, P4/2, vm3/2)
| | (P8, P4/2, vm3/2)
| style="text-align:center;" |  
| |  
|-
|-
| style="text-align:center;" | 16
| | 16
| style="text-align:center;" | (P8, P4/2, ^m6/2)
| | (P8, P4/2, ^m6/2)
| style="text-align:center;" |  
| |  
| style="text-align:center;" | (P8, P4/2, ^M6/2)
| | (P8, P4/2, ^M6/2)
| style="text-align:center;" |  
| |  
|-
|-
| style="text-align:center;" | 17
| | 17
| style="text-align:center;" | (P8, P4/2, vM6/2)
| | (P8, P4/2, vM6/2)
| style="text-align:center;" |  
| |  
| style="text-align:center;" | (P8, P4/2, vm7/2)
| | (P8, P4/2, vm7/2)
| style="text-align:center;" |  
| |  
|-
|-
| style="text-align:center;" | 18
| | 18
| style="text-align:center;" | (P8, P5/2, ^m3/2)
| | (P8, P5/2, ^m3/2)
| style="text-align:center;" |  
| |  
| style="text-align:center;" | (P8, P5/2, ^M2/2)
| | (P8, P5/2, ^M2/2)
| style="text-align:center;" |  
| |  
|-
|-
| style="text-align:center;" | 19
| | 19
| style="text-align:center;" | (P8, P5/2, vM3/2)
| | (P8, P5/2, vM3/2)
| style="text-align:center;" |  
| |  
| style="text-align:center;" | (P8, P5/2, vm3/2)
| | (P8, P5/2, vm3/2)
| style="text-align:center;" |  
| |  
|-
|-
| style="text-align:center;" | 20
| | 20
| style="text-align:center;" | (P8, P5/2, ^m6/2)
| | (P8, P5/2, ^m6/2)
| style="text-align:center;" |  
| |  
| style="text-align:center;" | (P8, P5/2, ^M6/2)
| | (P8, P5/2, ^M6/2)
| style="text-align:center;" |  
| |  
|-
|-
| style="text-align:center;" | 21
| | 21
| style="text-align:center;" | (P8, P5/2, vM6/2)
| | (P8, P5/2, vM6/2)
| style="text-align:center;" |  
| |  
| style="text-align:center;" | (P8, P5/2, vm7/2)
| | (P8, P5/2, vm7/2)
| style="text-align:center;" |  
| |  
|-
|-
| style="text-align:center;" | 22
| | 22
| style="text-align:center;" | (P8/2, P4/2, vM3/2)
| | (P8/2, P4/2, vM3/2)
| style="text-align:center;" | half-everything half-downmajor-3rd
| | half-everything half-downmajor-3rd
| style="text-align:center;" | (P8/2, P4/2, ^M2/2)
| | (P8/2, P4/2, ^M2/2)
| style="text-align:center;" |  
| |  
|}
|}
There are at least 100 third-splits and 287 quarter-splits. More columns could be added for ^1 = 33/32, ^1 = 729/704, ^1 = 27/26, etc.
There are at least 100 third-splits and 287 quarter-splits. More columns could be added for ^1 = 33/32, ^1 = 729/704, ^1 = 27/26, etc.
Line 1,768: Line 1,775:
A multi-EDO pergen is a rank-3 pergen plus a 3-limit comma. Adding this comma splits the octave and removes the middle term from the pergen. For example, Blackwood is 5-limit JI = (P8, P5, ^1) plus 256/243, making (P8/5, ^1). Such a pergen is in effect multiple copies of an edo. Its spoken name is rank-2 N-edo, meaning an edo extended to rank-2. Its notation is based on the edo's notation, expanded with an additional microtonal accidental pair. Examples:
A multi-EDO pergen is a rank-3 pergen plus a 3-limit comma. Adding this comma splits the octave and removes the middle term from the pergen. For example, Blackwood is 5-limit JI = (P8, P5, ^1) plus 256/243, making (P8/5, ^1). Such a pergen is in effect multiple copies of an edo. Its spoken name is rank-2 N-edo, meaning an edo extended to rank-2. Its notation is based on the edo's notation, expanded with an additional microtonal accidental pair. Examples:


{| class="wikitable"
{| class="wikitable" style="text-align:center;"  
|-
|-
! | temperament
! | temperament
Line 1,779: Line 1,786:
! | /1 ratio
! | /1 ratio
|-
|-
| style="text-align:center;" | Blackwood
| | Blackwood
| style="text-align:center;" | (P8/5, ^1)
| | (P8/5, ^1)
| style="text-align:center;" | rank-2 5-edo
| | rank-2 5-edo
| style="text-align:center;" | E = m2
| | E = m2
| style="text-align:center;" | D E=F G A B=C D
| | D E=F G A B=C D
| style="text-align:center;" | D F#v=Gv Bvv...
| | D F#v=Gv Bvv...
| style="text-align:center;" | 81/80 = 16/15
| | 81/80 = 16/15
| style="text-align:center;" | ---
| | ---
|-
|-
| style="text-align:center;" | Whitewood
| | Whitewood
| style="text-align:center;" | (P8/7, ^1)
| | (P8/7, ^1)
| style="text-align:center;" | rank-2 7-edo
| | rank-2 7-edo
| style="text-align:center;" | E = A1
| | E = A1
| style="text-align:center;" | D E F G A B C D
| | D E F G A B C D
| style="text-align:center;" | D F^ A^^...
| | D F^ A^^...
| style="text-align:center;" | 80/81 = 135/128
| | 80/81 = 135/128
| style="text-align:center;" | ---
| | ---
|-
|-
| style="text-align:center;" | 10edo+ya
| | 10edo+ya
| style="text-align:center;" | (P8/10, /1)
| | (P8/10, /1)
| style="text-align:center;" | rank-2 10-edo
| | rank-2 10-edo
| style="text-align:center;" | E = m2, E' = vvA1 = vvM2
| | E = m2, E' = vvA1 = vvM2
| style="text-align:center;" | D D^=Ev E=F F^=Gv G...
| | D D^=Ev E=F F^=Gv G...
| style="text-align:center;" | D F#\=G\ B\\...
| | D F#\=G\ B\\...
| style="text-align:center;" | (see below)
| | (see below)
| style="text-align:center;" | 81/80
| | 81/80
|-
|-
| style="text-align:center;" | 12edo+la
| | 12edo+la
| style="text-align:center;" | (P8/12, ^1)
| | (P8/12, ^1)
| style="text-align:center;" | rank-2 12-edo
| | rank-2 12-edo
| style="text-align:center;" | E = d2
| | E = d2
| style="text-align:center;" | D D#=Eb E F F#=Gb...
| | D D#=Eb E F F#=Gb...
| style="text-align:center;" | D G^ C^^
| | D G^ C^^
| style="text-align:center;" | 33/32
| | 33/32
| style="text-align:center;" | ---
| | ---
|-
|-
| style="text-align:center;" | "
| | "
| style="text-align:center;" | "
| | "
| style="text-align:center;" | "
| | "
| style="text-align:center;" | "
| | "
| style="text-align:center;" | "
| | "
| style="text-align:center;" | D G#v=Abv Dvv...
| | D G#v=Abv Dvv...
| style="text-align:center;" | 729/704
| | 729/704
| style="text-align:center;" | ---
| | ---
|-
|-
| style="text-align:center;" | 17edo+ya
| | 17edo+ya
| style="text-align:center;" | (P8/17, /1)
| | (P8/17, /1)
| style="text-align:center;" | rank-2 17-edo
| | rank-2 17-edo
| style="text-align:center;" | E = dd3, E' = vm2 = vvA1
| | E = dd3, E' = vm2 = vvA1
| style="text-align:center;" | D D^=Eb D#=Ev E F...
| | D D^=Eb D#=Ev E F...
| style="text-align:center;" | D F#\ A#\\=Bv\\...
| | D F#\ A#\\=Bv\\...
| style="text-align:center;" | 256/243
| | 256/243
| style="text-align:center;" | 81/80
| | 81/80
|}
|}
If the edo's notation uses ups and downs, the up symbol can often be equated to a 3-limit ratio. In 17-edo and 22-edo, ^1 = m2. In 31-edo and 43-edo it's d2. But in edos like 10, 15, 21 and 24, in which the circle of 5ths skips some notes, there is no 3-limit ratio. The ratio depends on the JI interpretation of the edo. For 10-edo, ^1 might equal 16/15, or 12/11, or 13/12.
If the edo's notation uses ups and downs, the up symbol can often be equated to a 3-limit ratio. In 17-edo and 22-edo, ^1 = m2. In 31-edo and 43-edo it's d2. But in edos like 10, 15, 21 and 24, in which the circle of 5ths skips some notes, there is no 3-limit ratio. The ratio depends on the JI interpretation of the edo. For 10-edo, ^1 might equal 16/15, or 12/11, or 13/12.
Line 1,841: Line 1,848:
It's possible to have a fifth-8ve pergen with an independent 5th, but there will be very small intervals of about 20¢. Here are two such:
It's possible to have a fifth-8ve pergen with an independent 5th, but there will be very small intervals of about 20¢. Here are two such:


{| class="wikitable"
{| class="wikitable" style="text-align:center;"  
|-
|-
! | temperament
! | temperament
Line 1,853: Line 1,860:
! | ^1 ratio
! | ^1 ratio
|-
|-
| style="text-align:center;" | laquinzo
| | laquinzo
| style="text-align:center;" | 2.3.7
| | 2.3.7
| style="text-align:center;" | (-14,0,0,5)
| | (-14,0,0,5)
| style="text-align:center;" | (P8/5, P5)
| | (P8/5, P5)
| style="text-align:center;" | fifth-8ve
| | fifth-8ve
| style="text-align:center;" | E = v<span style="vertical-align: super;">5</span>m2
| | E = v<span style="vertical-align: super;">5</span>m2
| style="text-align:center;" | D E^^ Gv A^ Cvv D
| | D E^^ Gv A^ Cvv D
| style="text-align:center;" | C G D A E...
| | C G D A E...
| style="text-align:center;" | 49/48
| | 49/48
|-
|-
| style="text-align:center;" | saquinru
| | saquinru
| style="text-align:center;" | 2.3.7
| | 2.3.7
| style="text-align:center;" | (22,-5,0,-5)
| | (22,-5,0,-5)
| style="text-align:center;" | "
| | "
| style="text-align:center;" | "
| | "
| style="text-align:center;" | "
| | "
| style="text-align:center;" | "
| | "
| style="text-align:center;" | "
| | "
| style="text-align:center;" | 64/63
| | 64/63
|}
|}
Unlike Blackwood, the ups and downs are in the perchain, not the genchain. It would be possible to notate Blackwood similarly. The pergen would be not (P8/5, ^1), but (P8/5, M3). The perchain would be C D^^ Fv G^ Bbvv C and the genchain would be C E G#... But this is not recommended, because it would cause "missing notes" (see next section). A multi-EDO pergen should never have an uninflected genchain.
Unlike Blackwood, the ups and downs are in the perchain, not the genchain. It would be possible to notate Blackwood similarly. The pergen would be not (P8/5, ^1), but (P8/5, M3). The perchain would be C D^^ Fv G^ Bbvv C and the genchain would be C E G#... But this is not recommended, because it would cause "missing notes" (see next section). A multi-EDO pergen should never have an uninflected genchain.
Line 1,887: Line 1,894:
Just as all rank-2 pergens in which 2 and 3 are present and independent can be numbered, so can all 2.5 pergens, all 2.7 pergens, all 3.5 pergens, etc. Every rank-2 pergen can be identified by its prime subgroup and its pergen number. The pergens are grouped into blocks and sections as before. Within each section, the pergens are ordered by cents size of the generator. Sometimes the pergen can be simplified. For example, 2.7 pergen #4 is (P8, m7/2) which is (P8, P4), which is equivalent to (P8, P5). P5 represents not 3/2 but half of 16/7, which is 3/2 sharpened by half of 64/63. Simplified pergens are marked with an asterisk.
Just as all rank-2 pergens in which 2 and 3 are present and independent can be numbered, so can all 2.5 pergens, all 2.7 pergens, all 3.5 pergens, etc. Every rank-2 pergen can be identified by its prime subgroup and its pergen number. The pergens are grouped into blocks and sections as before. Within each section, the pergens are ordered by cents size of the generator. Sometimes the pergen can be simplified. For example, 2.7 pergen #4 is (P8, m7/2) which is (P8, P4), which is equivalent to (P8, P5). P5 represents not 3/2 but half of 16/7, which is 3/2 sharpened by half of 64/63. Simplified pergens are marked with an asterisk.


{| class="wikitable"
{| class="wikitable" style="text-align:center;"  
|-
|-
! | <u>pergen number</u>
! | <u>pergen number</u>
Line 1,900: Line 1,907:
! | 5.7 (WWM3 = 5/1, d5 = 7/5)
! | 5.7 (WWM3 = 5/1, d5 = 7/5)
|-
|-
| style="text-align:center;" | 1
| | 1
| style="text-align:center;" | (P8, P5)
| | (P8, P5)
| style="text-align:center;" | (P8, M3)
| | (P8, M3)
| style="text-align:center;" | (P8, M2)
| | (P8, M2)
| style="text-align:center;" | (P12, M6)
| | (P12, M6)
| style="text-align:center;" | (P12, M3)
| | (P12, M3)
| style="text-align:center;" | (WWM3, d5)
| | (WWM3, d5)
|-
|-
! | half-splits
! | half-splits
Line 1,916: Line 1,923:
! |  
! |  
|-
|-
| style="text-align:center;" | 2
| | 2
| style="text-align:center;" | (P8/2, P5)
| | (P8/2, P5)
| style="text-align:center;" | (P8/2, M3)
| | (P8/2, M3)
| style="text-align:center;" | (P8/2, M2)
| | (P8/2, M2)
| style="text-align:center;" | (P12/2, M6)
| | (P12/2, M6)
| style="text-align:center;" | (P12/2, M3)
| | (P12/2, M3)
| style="text-align:center;" | (M9, d5)*
| | (M9, d5)*
|-
|-
| style="text-align:center;" | 3
| | 3
| style="text-align:center;" | (P8, P4/2)
| | (P8, P4/2)
| style="text-align:center;" | (P8, M2)*
| | (P8, M2)*
| style="text-align:center;" | (P8, M2/2)
| | (P8, M2/2)
| style="text-align:center;" | (P12, M6/2)
| | (P12, M6/2)
| style="text-align:center;" | (P12, M2)*
| | (P12, M2)*
| style="text-align:center;" | (WWM3, m3)*
| | (WWM3, m3)*
|-
|-
| style="text-align:center;" | 4
| | 4
| style="text-align:center;" | (P8, P5/2)
| | (P8, P5/2)
| style="text-align:center;" | (P8, m6/2)
| | (P8, m6/2)
| style="text-align:center;" | (P8, P5)*
| | (P8, P5)*
| style="text-align:center;" | (P12, P4)*
| | (P12, P4)*
| style="text-align:center;" | (P12, m10/2)
| | (P12, m10/2)
| style="text-align:center;" | (WWM3, M7)*
| | (WWM3, M7)*
|-
|-
| style="text-align:center;" | 5
| | 5
| style="text-align:center;" | (P8/2, P4/2)
| | (P8/2, P4/2)
| style="text-align:center;" | (P8/2, M2)*
| | (P8/2, M2)*
| style="text-align:center;" | (P8/2, M2/2)
| | (P8/2, M2/2)
| style="text-align:center;" | (P12/2, M6/2)
| | (P12/2, M6/2)
| style="text-align:center;" | (P12/2, M3/2)
| | (P12/2, M3/2)
| style="text-align:center;" | (M9, m3)*
| | (M9, m3)*
|-
|-
! | third-splits
! | third-splits
Line 1,956: Line 1,963:
! |  
! |  
|-
|-
| style="text-align:center;" | 6
| | 6
| style="text-align:center;" | (P8/3, P5)
| | (P8/3, P5)
| style="text-align:center;" | (P8/3, M3)
| | (P8/3, M3)
| style="text-align:center;" | (P8/3, M2)
| | (P8/3, M2)
| style="text-align:center;" | (P12/3, M6)
| | (P12/3, M6)
| style="text-align:center;" | (P12/3, M3)
| | (P12/3, M3)
| style="text-align:center;" | (WWM3/3, d5)
| | (WWM3/3, d5)
|-
|-
| style="text-align:center;" | 7
| | 7
| style="text-align:center;" | (P8, P4/3)
| | (P8, P4/3)
| style="text-align:center;" | (P8, M3/3)
| | (P8, M3/3)
| style="text-align:center;" | (P8, M2/3)
| | (P8, M2/3)
| style="text-align:center;" | (P12, M6/3)
| | (P12, M6/3)
| style="text-align:center;" | (P12, M3/3)
| | (P12, M3/3)
| style="text-align:center;" | (WWM3, d5/3)
| | (WWM3, d5/3)
|-
|-
| style="text-align:center;" | 8
| | 8
| style="text-align:center;" | (P8, P5/3)
| | (P8, P5/3)
| style="text-align:center;" | (P8, m6/3)
| | (P8, m6/3)
| style="text-align:center;" | (P8, m7/3)
| | (P8, m7/3)
| style="text-align:center;" | (P12, m7/3)
| | (P12, m7/3)
| style="text-align:center;" | (P12, P4)*
| | (P12, P4)*
| style="text-align:center;" | (WWM3, WA6/3)
| | (WWM3, WA6/3)
|-
|-
| style="text-align:center;" | 9
| | 9
| style="text-align:center;" | (P8, P11/3)
| | (P8, P11/3)
| style="text-align:center;" | (P8, M10/3)
| | (P8, M10/3)
| style="text-align:center;" | (P8, M9/3)
| | (P8, M9/3)
| style="text-align:center;" | (P12, WWM3/3)
| | (P12, WWM3/3)
| style="text-align:center;" | (P12, WM7/3)
| | (P12, WM7/3)
| style="text-align:center;" | (WWM3, WWm7/3)
| | (WWM3, WWm7/3)
|-
|-
| style="text-align:center;" | 10
| | 10
| style="text-align:center;" | (P8/3, P4/2)
| | (P8/3, P4/2)
| style="text-align:center;" | (P8/3, M2)*
| | (P8/3, M2)*
| style="text-align:center;" | (P8/3, M2/2)
| | (P8/3, M2/2)
| style="text-align:center;" | (P12/3, M6/2)
| | (P12/3, M6/2)
| style="text-align:center;" | (P12/3, M2)*
| | (P12/3, M2)*
| style="text-align:center;" | (WWM3/3, m3)*
| | (WWM3/3, m3)*
|-
|-
| style="text-align:center;" | 11
| | 11
| style="text-align:center;" | (P8/3, P5/2)
| | (P8/3, P5/2)
| style="text-align:center;" | (P8/3. m6/2)
| | (P8/3. m6/2)
| style="text-align:center;" | (P8/3, P5)*
| | (P8/3, P5)*
| style="text-align:center;" | (P12/3, P4)*
| | (P12/3, P4)*
| style="text-align:center;" | (P12/3, m10/2)
| | (P12/3, m10/2)
| style="text-align:center;" | (WWM3/3, M7)*
| | (WWM3/3, M7)*
|-
|-
| style="text-align:center;" | 12
| | 12
| style="text-align:center;" | (P8/2, P4/3)
| | (P8/2, P4/3)
| style="text-align:center;" | (P8/2, M3/3)
| | (P8/2, M3/3)
| style="text-align:center;" | (P8/2, M2/3)
| | (P8/2, M2/3)
| style="text-align:center;" | (P12/2, M6/3)
| | (P12/2, M6/3)
| style="text-align:center;" | (P12/2, M3/3)
| | (P12/2, M3/3)
| style="text-align:center;" | (M9, d5/3)*
| | (M9, d5/3)*
|-
|-
| style="text-align:center;" | 13
| | 13
| style="text-align:center;" | (P8/2, P5/3)
| | (P8/2, P5/3)
| style="text-align:center;" | (P8/2, m6/3)
| | (P8/2, m6/3)
| style="text-align:center;" | (P8/2, m7/3)
| | (P8/2, m7/3)
| style="text-align:center;" | (P12/2, m7/3)
| | (P12/2, m7/3)
| style="text-align:center;" | (P12/2, P4)*
| | (P12/2, P4)*
| style="text-align:center;" | (M9, WA6/3)*
| | (M9, WA6/3)*
|-
|-
| style="text-align:center;" | 14
| | 14
| style="text-align:center;" | (P8/2, P11/3)
| | (P8/2, P11/3)
| style="text-align:center;" | (P8/2, M10/3)
| | (P8/2, M10/3)
| style="text-align:center;" | (P8/2, M9/3)
| | (P8/2, M9/3)
| style="text-align:center;" | (P12/2, WWM3/3)
| | (P12/2, WWM3/3)
| style="text-align:center;" | (P12/2, WM7/3)
| | (P12/2, WM7/3)
| style="text-align:center;" | (M9, WWm7/3)*
| | (M9, WWm7/3)*
|-
|-
| style="text-align:center;" | 15
| | 15
| style="text-align:center;" | (P8/3, P4/3)
| | (P8/3, P4/3)
| style="text-align:center;" | (P8/3, M3/3)
| | (P8/3, M3/3)
| style="text-align:center;" | (P8/3, M2/3)
| | (P8/3, M2/3)
| style="text-align:center;" | (P12/3, M6/3)
| | (P12/3, M6/3)
| style="text-align:center;" | (P12/3, P4)*
| | (P12/3, P4)*
| style="text-align:center;" | (WWM3/3, d5/3)
| | (WWM3/3, d5/3)
|}
|}
For prime subgroup p.q, the unsplit pergen has period p/1. The generator is found by dividing q by p until it's less than p/1, and period-inverting if it's more than half of p/1.
For prime subgroup p.q, the unsplit pergen has period p/1. The generator is found by dividing q by p until it's less than p/1, and period-inverting if it's more than half of p/1.
Line 2,040: Line 2,047:
Multi-EDO pergens also appear in this table. For example, in row #33, (P8/5, ^1) replaces both 2.5 (P8/5, M3) and 2.7 (P8/5, M2). This has the advantage of avoiding missing notes. Since one fifth of 5/1 is only 25¢ from 7/5, the 5.7 (WWM3/5, d5) can optionally be replaced too.
Multi-EDO pergens also appear in this table. For example, in row #33, (P8/5, ^1) replaces both 2.5 (P8/5, M3) and 2.7 (P8/5, M2). This has the advantage of avoiding missing notes. Since one fifth of 5/1 is only 25¢ from 7/5, the 5.7 (WWM3/5, d5) can optionally be replaced too.


{| class="wikitable"
{| class="wikitable" style="text-align:center;"  
|-
|-
! | pergen number
! | pergen number
Line 2,050: Line 2,057:
! | 5.7
! | 5.7
|-
|-
| style="text-align:center;" | 33
| | 33
| style="text-align:center;" | (P8/5, P5)
| | (P8/5, P5)
| style="text-align:center;" | (P8/5, ^1)
| | (P8/5, ^1)
| style="text-align:center;" | (P8/5, ^1)
| | (P8/5, ^1)
| style="text-align:center;" | (P12/5, M6)
| | (P12/5, M6)
| style="text-align:center;" | (P12/5, M3)
| | (P12/5, M3)
| style="text-align:center;" | (WWM3/5, ^1)
| | (WWM3/5, ^1)
|}
|}


Line 2,119: Line 2,126:
The next table lists all the ranges for all multigens up to seventh-splits. One can look up one's generator in the first column and find a possible multigen. Use the octave inverse if G &gt; 600¢. Some ranges overlap. Those that are contained entirely within another range are listed in the righthand columns.
The next table lists all the ranges for all multigens up to seventh-splits. One can look up one's generator in the first column and find a possible multigen. Use the octave inverse if G &gt; 600¢. Some ranges overlap. Those that are contained entirely within another range are listed in the righthand columns.


{| class="wikitable"
{| class="wikitable" style="text-align:center;"  
|-
|-
! colspan="2" | <u>primary choice</u>
! colspan="2" | <u>primary choice</u>
Line 2,131: Line 2,138:
! | multigen
! | multigen
|-
|-
| style="text-align:center;" | 23-60¢
| | 23-60¢
| style="text-align:center;" | M2/4 (requires P8/2)
| | M2/4 (requires P8/2)
| style="text-align:center;" |  
| |  
| style="text-align:center;" |  
| |  
| style="text-align:center;" |  
| |  
| style="text-align:center;" |  
| |  
|-
|-
| style="text-align:center;" | 69-79¢
| | 69-79¢
| style="text-align:center;" | P4/7
| | P4/7
| style="text-align:center;" |  
| |  
| style="text-align:center;" |  
| |  
| style="text-align:center;" |  
| |  
| style="text-align:center;" |  
| |  
|-
|-
| style="text-align:center;" | 80-92¢
| | 80-92¢
| style="text-align:center;" | P4/6
| | P4/6
| style="text-align:center;" |  
| |  
| style="text-align:center;" |  
| |  
| style="text-align:center;" |  
| |  
| style="text-align:center;" |  
| |  
|-
|-
| style="text-align:center;" | 92-103¢
| | 92-103¢
| style="text-align:center;" | P5/7
| | P5/7
| style="text-align:center;" |  
| |  
| style="text-align:center;" |  
| |  
| style="text-align:center;" |  
| |  
| style="text-align:center;" |  
| |  
|-
|-
| style="text-align:center;" | 96-111¢
| | 96-111¢
| style="text-align:center;" | P4/5
| | P4/5
| style="text-align:center;" |  
| |  
| style="text-align:center;" |  
| |  
| style="text-align:center;" |  
| |  
| style="text-align:center;" |  
| |  
|-
|-
| style="text-align:center;" | 108-120¢
| | 108-120¢
| style="text-align:center;" | P5/6
| | P5/6
| style="text-align:center;" |  
| |  
| style="text-align:center;" |  
| |  
| style="text-align:center;" |  
| |  
| style="text-align:center;" |  
| |  
|-
|-
| style="text-align:center;" | 120-138¢
| | 120-138¢
| style="text-align:center;" | P4/4
| | P4/4
| style="text-align:center;" |  
| |  
| style="text-align:center;" |  
| |  
| style="text-align:center;" |  
| |  
| style="text-align:center;" |  
| |  
|-
|-
| style="text-align:center;" | 129-144¢
| | 129-144¢
| style="text-align:center;" | P5/5
| | P5/5
| style="text-align:center;" |  
| |  
| style="text-align:center;" |  
| |  
| style="text-align:center;" |  
| |  
| style="text-align:center;" |  
| |  
|-
|-
| style="text-align:center;" | 160-185¢
| | 160-185¢
| style="text-align:center;" | P4/3
| | P4/3
| style="text-align:center;" | 162-180¢
| | 162-180¢
| style="text-align:center;" | P5/4
| | P5/4
| style="text-align:center;" |  
| |  
| style="text-align:center;" |  
| |  
|-
|-
| style="text-align:center;" | 215-240¢
| | 215-240¢
| style="text-align:center;" | P5/3
| | P5/3
| style="text-align:center;" |  
| |  
| style="text-align:center;" |  
| |  
| style="text-align:center;" |  
| |  
| style="text-align:center;" |  
| |  
|-
|-
| style="text-align:center;" | 240-277¢
| | 240-277¢
| style="text-align:center;" | P4/2
| | P4/2
| style="text-align:center;" | 240-251¢
| | 240-251¢
| style="text-align:center;" | P11/7
| | P11/7
| style="text-align:center;" | 264-274¢
| | 264-274¢
| style="text-align:center;" | P12/7
| | P12/7
|-
|-
| style="text-align:center;" | 280-292¢
| | 280-292¢
| style="text-align:center;" | P11/6
| | P11/6
| style="text-align:center;" |  
| |  
| style="text-align:center;" |  
| |  
| style="text-align:center;" |  
| |  
| style="text-align:center;" |  
| |  
|-
|-
| style="text-align:center;" | 308-320¢
| | 308-320¢
| style="text-align:center;" | P12/6
| | P12/6
| style="text-align:center;" |  
| |  
| style="text-align:center;" |  
| |  
| style="text-align:center;" |  
| |  
| style="text-align:center;" |  
| |  
|-
|-
| style="text-align:center;" | 323-360¢
| | 323-360¢
| style="text-align:center;" | P5/2
| | P5/2
| style="text-align:center;" | 336-351¢
| | 336-351¢
| style="text-align:center;" | P11/5
| | P11/5
| style="text-align:center;" |  
| |  
| style="text-align:center;" |  
| |  
|-
|-
| style="text-align:center;" | 369-384¢
| | 369-384¢
| style="text-align:center;" | P12/5
| | P12/5
| style="text-align:center;" |  
| |  
| style="text-align:center;" |  
| |  
| style="text-align:center;" |  
| |  
| style="text-align:center;" |  
| |  
|-
|-
| style="text-align:center;" | 411-422¢
| | 411-422¢
| style="text-align:center;" | WWP4/7
| | WWP4/7
| style="text-align:center;" |  
| |  
| style="text-align:center;" |  
| |  
| style="text-align:center;" |  
| |  
| style="text-align:center;" |  
| |  
|-
|-
| style="text-align:center;" | 420-438¢
| | 420-438¢
| style="text-align:center;" | P11/4
| | P11/4
| style="text-align:center;" |  
| |  
| style="text-align:center;" |  
| |  
| style="text-align:center;" |  
| |  
| style="text-align:center;" |  
| |  
|-
|-
| style="text-align:center;" | 435-446¢
| | 435-446¢
| style="text-align:center;" | WWP5/7
| | WWP5/7
| style="text-align:center;" |  
| |  
| style="text-align:center;" |  
| |  
| style="text-align:center;" |  
| |  
| style="text-align:center;" |  
| |  
|-
|-
| style="text-align:center;" | 462-480¢
| | 462-480¢
| style="text-align:center;" | P12/4
| | P12/4
| style="text-align:center;" |  
| |  
| style="text-align:center;" |  
| |  
| style="text-align:center;" |  
| |  
| style="text-align:center;" |  
| |  
|-
|-
| style="text-align:center;" | 480-554¢
| | 480-554¢
| style="text-align:center;" | P4 = P5
| | P4 = P5
| style="text-align:center;" | 480-492¢
| | 480-492¢
| style="text-align:center;" | WWP4/6
| | WWP4/6
| style="text-align:center;" | 508-520¢
| | 508-520¢
| style="text-align:center;" | WWP5/6
| | WWP5/6
|-
|-
| style="text-align:center;" | 560-585¢
| | 560-585¢
| style="text-align:center;" | P11/3
| | P11/3
| style="text-align:center;" |  
| |  
| style="text-align:center;" |  
| |  
| style="text-align:center;" |  
| |  
| style="text-align:center;" |  
| |  
|-
|-
| style="text-align:center;" | 576-591¢
| | 576-591¢
| style="text-align:center;" | WWP4/5
| | WWP4/5
| style="text-align:center;" | 583-593¢
| | 583-593¢
| style="text-align:center;" | WWWP4/7
| | WWWP4/7
| style="text-align:center;" |  
| |  
| style="text-align:center;" |  
| |  
|}
|}
There are gaps in the table, especially near 150¢, 200¢, 300¢ and 400¢. Some tunings simply aren't compatible with fifth-generated heptatonic notation. But the total range of possible generators is mostly well covered, providing convenient notation options. In particular, if the tuning's generator is just over 720¢, to avoid descending 2nds, instead of calling the generator a 5th, one can call its inverse a quarter-12th. The generator is notated as an up-5th, and four of them make a WWP4.
There are gaps in the table, especially near 150¢, 200¢, 300¢ and 400¢. Some tunings simply aren't compatible with fifth-generated heptatonic notation. But the total range of possible generators is mostly well covered, providing convenient notation options. In particular, if the tuning's generator is just over 720¢, to avoid descending 2nds, instead of calling the generator a 5th, one can call its inverse a quarter-12th. The generator is notated as an up-5th, and four of them make a WWP4.
Line 2,295: Line 2,302:
Every rank-2 pergen generates certain MOS scales. This of course depends on the exact size of the generator. In this table, the 5th is assumed to be between 4\7 and 3\5. Sometimes the genchain is too short to generate the multigen. For example, (P8/3, P4/2) [6] has 3 genchains, each with only 2 notes, and thus only 1 step. But it takes 2 steps to make a 4th, so the scale doesn't actually contain any 4ths. Such scales are marked with an asterisk.
Every rank-2 pergen generates certain MOS scales. This of course depends on the exact size of the generator. In this table, the 5th is assumed to be between 4\7 and 3\5. Sometimes the genchain is too short to generate the multigen. For example, (P8/3, P4/2) [6] has 3 genchains, each with only 2 notes, and thus only 1 step. But it takes 2 steps to make a 4th, so the scale doesn't actually contain any 4ths. Such scales are marked with an asterisk.


{| class="wikitable"
{| class="wikitable" style="text-align:center;"  
|-
|-
! colspan="2" | <u>pergen</u>
! colspan="2" | <u>pergen</u>
Line 2,303: Line 2,310:
! |  
! |  
|-
|-
| style="text-align:center;" | (P8, P5)
| | (P8, P5)
| style="text-align:center;" | unsplit
| | unsplit
| style="text-align:center;" | 5 = 2L 3s
| | 5 = 2L 3s
| style="text-align:center;" | 7 = 5L 2s
| | 7 = 5L 2s
| colspan="2" | 12 = 7L 5s (or 5L 7s)
| colspan="2" | 12 = 7L 5s (or 5L 7s)
| |  
| |  
Line 2,319: Line 2,326:
! |  
! |  
|-
|-
| style="text-align:center;" | (P8/2, P5)
| | (P8/2, P5)
| style="text-align:center;" | half-8ve
| | half-8ve
| style="text-align:center;" | 6 = 2L 4s
| | 6 = 2L 4s
| style="text-align:center;" | 8 = 2L 6s
| | 8 = 2L 6s
| style="text-align:center;" | 10 = 2L 8s
| | 10 = 2L 8s
| colspan="3" | 12 = 2L 10s (or 10L 2s)
| colspan="3" | 12 = 2L 10s (or 10L 2s)
|-
|-
| style="text-align:center;" | (P8, P4/2)
| | (P8, P4/2)
| style="text-align:center;" | half-4th
| | half-4th
| style="text-align:center;" | 5 = 4L 1s
| | 5 = 4L 1s
| style="text-align:center;" | 9 = 5L 4s
| | 9 = 5L 4s
| style="text-align:center;" |  
| |  
| style="text-align:center;" |  
| |  
| |  
| |  
| |  
| |  
|-
|-
| style="text-align:center;" | (P8, P5/2)
| | (P8, P5/2)
| style="text-align:center;" | half-5th
| | half-5th
| style="text-align:center;" | 7 = 3L 4s
| | 7 = 3L 4s
| style="text-align:center;" | 10 = 7L 3s
| | 10 = 7L 3s
| style="text-align:center;" |  
| |  
| style="text-align:center;" |  
| |  
| |  
| |  
| |  
| |  
|-
|-
| style="text-align:center;" | (P8/2, P4/2)
| | (P8/2, P4/2)
| style="text-align:center;" | half-everything
| | half-everything
| style="text-align:center;" | 6 = 4L 2s
| | 6 = 4L 2s
| style="text-align:center;" | 10 = 4L 6s
| | 10 = 4L 6s
| style="text-align:center;" |  
| |  
| style="text-align:center;" |  
| |  
| |  
| |  
| |  
| |  
Line 2,361: Line 2,368:
! |  
! |  
|-
|-
| style="text-align:center;" | (P8/3, P5)
| | (P8/3, P5)
| style="text-align:center;" | third-8ve
| | third-8ve
| style="text-align:center;" | 6 = 3L 3s
| | 6 = 3L 3s
| style="text-align:center;" | 9 = 3L 6s
| | 9 = 3L 6s
| colspan="2" | 12 = 3L 9s (or 9L 3s)
| colspan="2" | 12 = 3L 9s (or 9L 3s)
| |  
| |  
| |  
| |  
|-
|-
| style="text-align:center;" | (P8, P4/3)
| | (P8, P4/3)
| style="text-align:center;" | third-4th
| | third-4th
| style="text-align:center;" | 5 = 1L 4s
| | 5 = 1L 4s
| style="text-align:center;" | 6 = 1L 5s
| | 6 = 1L 5s
| style="text-align:center;" | 7 = 1L 6s
| | 7 = 1L 6s
| style="text-align:center;" | 8 = 7L 1s
| | 8 = 7L 1s
| |  
| |  
| |  
| |  
|-
|-
| style="text-align:center;" | (P8, P5/3)
| | (P8, P5/3)
| style="text-align:center;" | third-5th
| | third-5th
| style="text-align:center;" | 5 = 1L 4s
| | 5 = 1L 4s
| style="text-align:center;" | 6 = 5L 1s
| | 6 = 5L 1s
| style="text-align:center;" | 11 = 5L 6s
| | 11 = 5L 6s
| style="text-align:center;" |  
| |  
| |  
| |  
| |  
| |  
|-
|-
| style="text-align:center;" | (P8, P11/3)
| | (P8, P11/3)
| style="text-align:center;" | third-11th
| | third-11th
| style="text-align:center;" | 5 = 2L 3s
| | 5 = 2L 3s
| style="text-align:center;" | 7 = 2L 5s
| | 7 = 2L 5s
| style="text-align:center;" | 9 = 2L 7s
| | 9 = 2L 7s
| style="text-align:center;" | 11 = 2L 9s
| | 11 = 2L 9s
| |  
| |  
| |  
| |  
|-
|-
| style="text-align:center;" | (P8/3, P4/2)
| | (P8/3, P4/2)
| style="text-align:center;" | third-8ve, half-4th
| | third-8ve, half-4th
| style="text-align:center;" | 6 = 3L 3s *
| | 6 = 3L 3s *
| style="text-align:center;" | 9 = 6L 3s
| | 9 = 6L 3s
| style="text-align:center;" |  
| |  
| style="text-align:center;" |  
| |  
| |  
| |  
| |  
| |  
|-
|-
| style="text-align:center;" | (P8/3, P5/2)
| | (P8/3, P5/2)
| style="text-align:center;" | third-8ve, half-5th
| | third-8ve, half-5th
| style="text-align:center;" | 6 = 3L 3s *
| | 6 = 3L 3s *
| style="text-align:center;" | 9 = 3L 6s
| | 9 = 3L 6s
| style="text-align:center;" | 12 = 3L 9s
| | 12 = 3L 9s
| style="text-align:center;" |  
| |  
| |  
| |  
| |  
| |  
|-
|-
| style="text-align:center;" | (P8/2, P4/3)
| | (P8/2, P4/3)
| style="text-align:center;" | half-8ve, third-4th
| | half-8ve, third-4th
| style="text-align:center;" | 6 = 2L 4s *
| | 6 = 2L 4s *
| style="text-align:center;" | 8 = 6L 2s
| | 8 = 6L 2s
| style="text-align:center;" |  
| |  
| style="text-align:center;" |  
| |  
| |  
| |  
| |  
| |  
|-
|-
| style="text-align:center;" | (P8/2, P5/3)
| | (P8/2, P5/3)
| style="text-align:center;" | half-8ve, third-5th
| | half-8ve, third-5th
| style="text-align:center;" | 6 = 4L 2s *
| | 6 = 4L 2s *
| style="text-align:center;" | 10 = 6L 4s
| | 10 = 6L 4s
| style="text-align:center;" |  
| |  
| style="text-align:center;" |  
| |  
| |  
| |  
| |  
| |  
|-
|-
| style="text-align:center;" | (P8/2, P11/3)
| | (P8/2, P11/3)
| style="text-align:center;" | half-8ve, third-11th
| | half-8ve, third-11th
| style="text-align:center;" | 6 = 2L 4s *
| | 6 = 2L 4s *
| style="text-align:center;" | 8 = 2L 6s
| | 8 = 2L 6s
| style="text-align:center;" | 10 = 2L 8s
| | 10 = 2L 8s
| style="text-align:center;" | 12 = 2L 10s
| | 12 = 2L 10s
| |  
| |  
| |  
| |  
|-
|-
| style="text-align:center;" | (P8/3, P4/3)
| | (P8/3, P4/3)
| style="text-align:center;" | third-everything
| | third-everything
| style="text-align:center;" | 6 = 3L 3s *
| | 6 = 3L 3s *
| style="text-align:center;" | 9 = 6L 3s *
| | 9 = 6L 3s *
| style="text-align:center;" |  
| |  
| style="text-align:center;" |  
| |  
| |  
| |  
| |  
| |  
Line 2,458: Line 2,465:
! |  
! |  
|-
|-
| style="text-align:center;" | (P8/4, P5)
| | (P8/4, P5)
| style="text-align:center;" | quarter-8ve
| | quarter-8ve
| style="text-align:center;" | 8 = 4L 4s
| | 8 = 4L 4s
| colspan="2" | 12 = 4L 8s (or 8L 4s)
| colspan="2" | 12 = 4L 8s (or 8L 4s)
| style="text-align:center;" |  
| |  
| |  
| |  
| |  
| |  
|-
|-
| style="text-align:center;" | (P8, P4/4)
| | (P8, P4/4)
| style="text-align:center;" | quarter-4th
| | quarter-4th
| style="text-align:center;" | 5 = 1L 4s
| | 5 = 1L 4s
| style="text-align:center;" | 6 = 1L 5s
| | 6 = 1L 5s
| style="text-align:center;" | 7 = 1L 6s
| | 7 = 1L 6s
| style="text-align:center;" | 8 = 1L 7s
| | 8 = 1L 7s
| | 9 = 1L 8s
| | 9 = 1L 8s
| | 10 = 9L 1s
| | 10 = 9L 1s
|-
|-
| style="text-align:center;" | (P8, P5/4)
| | (P8, P5/4)
| style="text-align:center;" | quarter-5th
| | quarter-5th
| style="text-align:center;" | 5 = 1L 4s
| | 5 = 1L 4s
| style="text-align:center;" | 6 = 1L 5s
| | 6 = 1L 5s
| style="text-align:center;" | 7 = 6L 1s
| | 7 = 6L 1s
| style="text-align:center;" |  
| |  
| |  
| |  
| |  
| |  
|-
|-
| style="text-align:center;" | (P8, P11/4)
| | (P8, P11/4)
| style="text-align:center;" | quarter-11th
| | quarter-11th
| style="text-align:center;" | 5 = 3L 2s
| | 5 = 3L 2s
| style="text-align:center;" | 8 = 3L 5s
| | 8 = 3L 5s
| style="text-align:center;" | 11 = 3L 8s
| | 11 = 3L 8s
| style="text-align:center;" |  
| |  
| |  
| |  
| |  
| |  
|-
|-
| style="text-align:center;" | (P8, P12/4)
| | (P8, P12/4)
| style="text-align:center;" | quarter-12th
| | quarter-12th
| style="text-align:center;" | 5 = 3L 2s
| | 5 = 3L 2s
| style="text-align:center;" | 8 = 5L 3s
| | 8 = 5L 3s
| style="text-align:center;" |  
| |  
| style="text-align:center;" |  
| |  
| |  
| |  
| |  
| |  
|-
|-
| style="text-align:center;" | (P8/4, P4/2)
| | (P8/4, P4/2)
| style="text-align:center;" | quarter-8ve half-4th
| | quarter-8ve half-4th
| style="text-align:center;" | 8 = 4L 4s *
| | 8 = 4L 4s *
| style="text-align:center;" | 12 = 4L 8s
| | 12 = 4L 8s
| style="text-align:center;" |  
| |  
| style="text-align:center;" |  
| |  
| |  
| |  
| |  
| |  
|-
|-
| style="text-align:center;" | (P8/2, M2/4)
| | (P8/2, M2/4)
| style="text-align:center;" | half-8ve quarter-tone
| | half-8ve quarter-tone
| style="text-align:center;" | 6 = 2L 4s *
| | 6 = 2L 4s *
| style="text-align:center;" | 8 = 2L 6s *
| | 8 = 2L 6s *
| style="text-align:center;" | 10 = 2L 8s
| | 10 = 2L 8s
| style="text-align:center;" | 12 = 2L 10s
| | 12 = 2L 10s
| |  
| |  
| |  
| |  
|-
|-
| style="text-align:center;" | (P8/2, P4/4)
| | (P8/2, P4/4)
| style="text-align:center;" | half-8ve quarter-4th
| | half-8ve quarter-4th
| style="text-align:center;" | 6 = 2L 4s *
| | 6 = 2L 4s *
| style="text-align:center;" | 8 = 2L 6s *
| | 8 = 2L 6s *
| style="text-align:center;" | 10 = 8L 2s
| | 10 = 8L 2s
| style="text-align:center;" |  
| |  
| |  
| |  
| |  
| |  
|-
|-
| style="text-align:center;" | (P8/2, P5/4)
| | (P8/2, P5/4)
| style="text-align:center;" | half-8ve quarter-5th
| | half-8ve quarter-5th
| style="text-align:center;" | 6 = 2L 4s *
| | 6 = 2L 4s *
| style="text-align:center;" | 8 = 6L 2s *
| | 8 = 6L 2s *
| style="text-align:center;" |  
| |  
| style="text-align:center;" |  
| |  
| |  
| |  
| |  
| |  
|-
|-
| style="text-align:center;" | (P8/4, P4/3)
| | (P8/4, P4/3)
| style="text-align:center;" | quarter-8ve third-4th
| | quarter-8ve third-4th
| style="text-align:center;" | 8 = 4L 4s *
| | 8 = 4L 4s *
| style="text-align:center;" | 12 = 8L 4s *
| | 12 = 8L 4s *
| style="text-align:center;" |  
| |  
| style="text-align:center;" |  
| |  
| |  
| |  
| |  
| |  
|-
|-
| style="text-align:center;" | (P8/4, P5/3)
| | (P8/4, P5/3)
| style="text-align:center;" | quarter-8ve third-5th
| | quarter-8ve third-5th
| style="text-align:center;" | 8 = 4L 4s *
| | 8 = 4L 4s *
| style="text-align:center;" | 12 = 4L 8s *
| | 12 = 4L 8s *
| style="text-align:center;" |  
| |  
| style="text-align:center;" |  
| |  
| |  
| |  
| |  
| |  
|-
|-
| style="text-align:center;" | (P8/4, P11/3)
| | (P8/4, P11/3)
| style="text-align:center;" | quarter-8ve third-11th
| | quarter-8ve third-11th
| style="text-align:center;" | 8 = 4L 4s *
| | 8 = 4L 4s *
| style="text-align:center;" | 12 = 4L 8s *
| | 12 = 4L 8s *
| style="text-align:center;" |  
| |  
| style="text-align:center;" |  
| |  
| |  
| |  
| |  
| |  
|-
|-
| style="text-align:center;" | (P8/3, P4/4)
| | (P8/3, P4/4)
| style="text-align:center;" | third-8ve quarter-4th
| | third-8ve quarter-4th
| style="text-align:center;" | 6 = 3L 3s *
| | 6 = 3L 3s *
| style="text-align:center;" | 9 = 3L 6s *
| | 9 = 3L 6s *
| style="text-align:center;" | 12 = 9L 3s *
| | 12 = 9L 3s *
| style="text-align:center;" |  
| |  
| |  
| |  
| |  
| |  
|-
|-
| style="text-align:center;" | (P8/3, P5/4)
| | (P8/3, P5/4)
| style="text-align:center;" | third-8ve quarter-5th
| | third-8ve quarter-5th
| style="text-align:center;" | 6 = 3L 3s *
| | 6 = 3L 3s *
| style="text-align:center;" | 9 = 6L 3s *
| | 9 = 6L 3s *
| style="text-align:center;" |  
| |  
| style="text-align:center;" |  
| |  
| |  
| |  
| |  
| |  
|-
|-
| style="text-align:center;" | (P8/3, P11/4)
| | (P8/3, P11/4)
| style="text-align:center;" | third-8ve quarter-11th
| | third-8ve quarter-11th
| style="text-align:center;" | 6 = 3L 3s *
| | 6 = 3L 3s *
| style="text-align:center;" | 9 = 3L 6s *
| | 9 = 3L 6s *
| style="text-align:center;" | 12 = 3L 9s *
| | 12 = 3L 9s *
| style="text-align:center;" |  
| |  
| |  
| |  
| |  
| |  
|-
|-
| style="text-align:center;" | (P8/3, P12/4)
| | (P8/3, P12/4)
| style="text-align:center;" | third-8ve quarter-12th
| | third-8ve quarter-12th
| style="text-align:center;" | 6 = 3L 3s *
| | 6 = 3L 3s *
| style="text-align:center;" | 9 = 3L 6s *
| | 9 = 3L 6s *
| style="text-align:center;" | 12 = 3L 9s *
| | 12 = 3L 9s *
| style="text-align:center;" |  
| |  
| |  
| |  
| |  
| |  
|-
|-
| style="text-align:center;" | (P8/4, P4/4)
| | (P8/4, P4/4)
| style="text-align:center;" | quarter-everything
| | quarter-everything
| style="text-align:center;" | 8 = 4L 4s *
| | 8 = 4L 4s *
| style="text-align:center;" | 12 = 8L 4s *
| | 12 = 8L 4s *
| style="text-align:center;" |  
| |  
| style="text-align:center;" |  
| |  
| |  
| |  
| |  
| |  
Line 2,613: Line 2,620:
A MOS scale tends to be generated by just a few pergens. The table below shows the pergen that best corresponds to each MOS scale, as well as some others that could also generate the scale. The best pergen is the simplest, and also one that makes a reasonable L/s ratio. A ratio of 3 or more makes a scale that's too lopsided.
A MOS scale tends to be generated by just a few pergens. The table below shows the pergen that best corresponds to each MOS scale, as well as some others that could also generate the scale. The best pergen is the simplest, and also one that makes a reasonable L/s ratio. A ratio of 3 or more makes a scale that's too lopsided.


{| class="wikitable"
{| class="wikitable" style="text-align:center;"  
|-
|-
! | MOS scale
! | MOS scale
Line 2,624: Line 2,631:
! |  
! |  
|-
|-
| style="text-align:center;" | 1L 4s
| | 1L 4s
| style="text-align:center;" | (P8, P5/3) [5]
| | (P8, P5/3) [5]
| style="text-align:center;" | third-5th pentatonic
| | third-5th pentatonic
| | third-4th, quarter-4th, quarter-5th
| | third-4th, quarter-4th, quarter-5th
|-
|-
| style="text-align:center;" | 2L 3s
| | 2L 3s
| style="text-align:center;" | (P8, P5) [5]
| | (P8, P5) [5]
| style="text-align:center;" | unsplit pentatonic
| | unsplit pentatonic
| | third-11th
| | third-11th
|-
|-
| style="text-align:center;" | 3L 2s
| | 3L 2s
| style="text-align:center;" | (P8, P12/4) [5]
| | (P8, P12/4) [5]
| style="text-align:center;" | quarter-12th pentatonic
| | quarter-12th pentatonic
| | quarter-11th
| | quarter-11th
|-
|-
| style="text-align:center;" | 4L 1s
| | 4L 1s
| style="text-align:center;" | (P8, P4/2) [5]
| | (P8, P4/2) [5]
| style="text-align:center;" | half-4th pentatonic
| | half-4th pentatonic
| |  
| |  
|-
|-
Line 2,649: Line 2,656:
! |  
! |  
|-
|-
| style="text-align:center;" | 1L 5s
| | 1L 5s
| style="text-align:center;" | (P8, P4/3) [6]
| | (P8, P4/3) [6]
| style="text-align:center;" | third-4th hexatonic
| | third-4th hexatonic
| | quarter-4th, quarter-5th, fifth-4th, fifth-5th
| | quarter-4th, quarter-5th, fifth-4th, fifth-5th
|-
|-
| style="text-align:center;" | 2L 4s
| | 2L 4s
| style="text-align:center;" | (P8/2, P5) [6]
| | (P8/2, P5) [6]
| style="text-align:center;" | half-8ve hexatonic
| | half-8ve hexatonic
| |  
| |  
|-
|-
| style="text-align:center;" | 3L 3s
| | 3L 3s
| style="text-align:center;" | (P8/3, P5) [6]
| | (P8/3, P5) [6]
| style="text-align:center;" | third-8ve hexatonic
| | third-8ve hexatonic
| |  
| |  
|-
|-
| style="text-align:center;" | 4L 2s
| | 4L 2s
| style="text-align:center;" | (P8/2, P4/2) [6]
| | (P8/2, P4/2) [6]
| style="text-align:center;" | half-everything hexatonic
| | half-everything hexatonic
| |  
| |  
|-
|-
| style="text-align:center;" | 5L 1s
| | 5L 1s
| style="text-align:center;" | (P8, P5/3) [6]
| | (P8, P5/3) [6]
| style="text-align:center;" | third-5th hexatonic
| | third-5th hexatonic
| |  
| |  
|-
|-
Line 2,679: Line 2,686:
! |  
! |  
|-
|-
| style="text-align:center;" | 1L 6s
| | 1L 6s
| style="text-align:center;" | (P8, P4/3) [7]
| | (P8, P4/3) [7]
| style="text-align:center;" | third-4th heptatonic
| | third-4th heptatonic
| | quarter-4th, fifth-4th, fifth-5th, sixth-4th, sixth-5th
| | quarter-4th, fifth-4th, fifth-5th, sixth-4th, sixth-5th
|-
|-
| style="text-align:center;" | 2L 5s
| | 2L 5s
| style="text-align:center;" | (P8, P11/3) [7]
| | (P8, P11/3) [7]
| style="text-align:center;" | third-11th heptatonic
| | third-11th heptatonic
| | fifth-double-wide-4th, sixth-double-wide-5th
| | fifth-double-wide-4th, sixth-double-wide-5th
|-
|-
| style="text-align:center;" | 3L 4s
| | 3L 4s
| style="text-align:center;" | (P8, P5/2) [7]
| | (P8, P5/2) [7]
| style="text-align:center;" | half-5th heptatonic
| | half-5th heptatonic
| | fifth-12th
| | fifth-12th
|-
|-
| style="text-align:center;" | 4L 3s
| | 4L 3s
| style="text-align:center;" | (P8, P11/5) [7]
| | (P8, P11/5) [7]
| style="text-align:center;" | fifth-11th heptatonic
| | fifth-11th heptatonic
| | sixth-12th
| | sixth-12th
|-
|-
| style="text-align:center;" | 5L 2s
| | 5L 2s
| style="text-align:center;" | (P8, P5) [7]
| | (P8, P5) [7]
| style="text-align:center;" | unsplit heptatonic
| | unsplit heptatonic
| | sixth-double-wide-4th
| | sixth-double-wide-4th
|-
|-
| style="text-align:center;" | 6L 1s
| | 6L 1s
| style="text-align:center;" | (P8, P5/4) [7]
| | (P8, P5/4) [7]
| style="text-align:center;" | quarter-5th heptatonic
| | quarter-5th heptatonic
| |  
| |  
|-
|-
Line 2,714: Line 2,721:
! |  
! |  
|-
|-
| style="text-align:center;" | 1L 7s
| | 1L 7s
| style="text-align:center;" | (P8, P4/4) [8]
| | (P8, P4/4) [8]
| style="text-align:center;" | quarter-4th octotonic
| | quarter-4th octotonic
| | fifth-4th, fifth-5th, sixth-4th, sixth-5th, seventh-4th, seventh-5th
| | fifth-4th, fifth-5th, sixth-4th, sixth-5th, seventh-4th, seventh-5th
|-
|-
| style="text-align:center;" | 2L 6s
| | 2L 6s
| style="text-align:center;" | (P8/2, P5) [8]
| | (P8/2, P5) [8]
| style="text-align:center;" | half-8ve octotonic
| | half-8ve octotonic
| |  
| |  
|-
|-
| style="text-align:center;" | 3L 5s
| | 3L 5s
| style="text-align:center;" | (P8, P11/4) [8]
| | (P8, P11/4) [8]
| style="text-align:center;" | quarter-11th octotonic
| | quarter-11th octotonic
| | seventh-WW4th, seventh-WW5th
| | seventh-WW4th, seventh-WW5th
|-
|-
| style="text-align:center;" | 4L 4s
| | 4L 4s
| style="text-align:center;" | (P8/4, P5) [8]
| | (P8/4, P5) [8]
| style="text-align:center;" | quarter-8ve octotonic
| | quarter-8ve octotonic
| |  
| |  
|-
|-
| style="text-align:center;" | 5L 3s
| | 5L 3s
| style="text-align:center;" | (P8, P12/4) [8]
| | (P8, P12/4) [8]
| style="text-align:center;" | quarter-12th octotonic
| | quarter-12th octotonic
| | (very lopsided, unless 5th is quite flat)
| | (very lopsided, unless 5th is quite flat)
|-
|-
| style="text-align:center;" | 6L 2s
| | 6L 2s
| style="text-align:center;" | (P8/2, P4/3) [8]
| | (P8/2, P4/3) [8]
| style="text-align:center;" | half-8ve third-4th octotonic
| | half-8ve third-4th octotonic
| |  
| |  
|-
|-
| style="text-align:center;" | 7L 1s
| | 7L 1s
| style="text-align:center;" | (P8, P4/3) [8]
| | (P8, P4/3) [8]
| style="text-align:center;" | third-4th octotonic
| | third-4th octotonic
| |  
| |  
|-
|-
Line 2,754: Line 2,761:
! |  
! |  
|-
|-
| style="text-align:center;" | 1L 8s
| | 1L 8s
| style="text-align:center;" | (P8, P4/4) [9]
| | (P8, P4/4) [9]
| style="text-align:center;" | quarter-4th nonatonic
| | quarter-4th nonatonic
| | fifth-4th, sixth-4th, sixth-5th, seventh-4th/5th, eighth-4th/5th
| | fifth-4th, sixth-4th, sixth-5th, seventh-4th/5th, eighth-4th/5th
|-
|-
| style="text-align:center;" | 2L 7s
| | 2L 7s
| style="text-align:center;" | (P8, W<span style="vertical-align: super;">3</span>P5/8) [9]
| | (P8, W<span style="vertical-align: super;">3</span>P5/8) [9]
| style="text-align:center;" | eighth-W<span style="vertical-align: super;">3</span>5th nonatonic
| | eighth-W<span style="vertical-align: super;">3</span>5th nonatonic
| | third-11th, fifth-WW4th
| | third-11th, fifth-WW4th
|-
|-
| style="text-align:center;" | 3L 6s
| | 3L 6s
| style="text-align:center;" | (P8/3, P5) [9]
| | (P8/3, P5) [9]
| style="text-align:center;" | third-8ve nonatonic
| | third-8ve nonatonic
| | third-8ve half-5th
| | third-8ve half-5th
|-
|-
| style="text-align:center;" | 4L 5s
| | 4L 5s
| style="text-align:center;" | (P8, P12/7) [9]
| | (P8, P12/7) [9]
| style="text-align:center;" | seventh-12th nonatonic
| | seventh-12th nonatonic
| | sixth-11th
| | sixth-11th
|-
|-
| style="text-align:center;" | 5L 4s
| | 5L 4s
| style="text-align:center;" | (P8, P4/2) [9]
| | (P8, P4/2) [9]
| style="text-align:center;" | half-4th nonatonic
| | half-4th nonatonic
| | (lopsided unless 4th is sharp), seventh-11th
| | (lopsided unless 4th is sharp), seventh-11th
|-
|-
| style="text-align:center;" | 6L 3s
| | 6L 3s
| style="text-align:center;" | (P8/3, P4/2) [9]
| | (P8/3, P4/2) [9]
| style="text-align:center;" | third-8ve half-4th nonatonic
| | third-8ve half-4th nonatonic
| |  
| |  
|-
|-
| style="text-align:center;" | 7L 2s
| | 7L 2s
| style="text-align:center;" | (P8, WWP5/6)[9]
| | (P8, WWP5/6)[9]
| style="text-align:center;" | sixth-WW5th nonatonic
| | sixth-WW5th nonatonic
| | (lopsided unless 5th is sharp)
| | (lopsided unless 5th is sharp)
|-
|-
| style="text-align:center;" | 8L 1s
| | 8L 1s
| style="text-align:center;" | (P8, P5/5) [9]
| | (P8, P5/5) [9]
| style="text-align:center;" | fifth-5th nonatonic
| | fifth-5th nonatonic
| |  
| |  
|-
|-
Line 2,799: Line 2,806:
! |  
! |  
|-
|-
| style="text-align:center;" | 1L 9s
| | 1L 9s
| style="text-align:center;" | (P8, P5/6) [10]
| | (P8, P5/6) [10]
| style="text-align:center;" | sixth-5th decatonic
| | sixth-5th decatonic
| | fifth-4th, sixth-4th, seventh-4th/5th, eighth-4th/5th, ninth-4th/5th
| | fifth-4th, sixth-4th, seventh-4th/5th, eighth-4th/5th, ninth-4th/5th
|-
|-
| style="text-align:center;" | 2L 8s
| | 2L 8s
| style="text-align:center;" | (P8/2, P5) [10]
| | (P8/2, P5) [10]
| style="text-align:center;" | half-8ve decatonic
| | half-8ve decatonic
| | half-8ve quartertone, half-8ve third-11th
| | half-8ve quartertone, half-8ve third-11th
|-
|-
| style="text-align:center;" | 3L 7s
| | 3L 7s
| style="text-align:center;" | (P8, P12/5) [10]
| | (P8, P12/5) [10]
| style="text-align:center;" | fifth-12th decatonic
| | fifth-12th decatonic
| | eighth-WW4th, eighth-WW5th
| | eighth-WW4th, eighth-WW5th
|-
|-
| style="text-align:center;" | 4L 6s
| | 4L 6s
| style="text-align:center;" | (P8/2, P4/2) [10]
| | (P8/2, P4/2) [10]
| style="text-align:center;" | half-everything decatonic
| | half-everything decatonic
| |  
| |  
|-
|-
| style="text-align:center;" | 5L 5s
| | 5L 5s
| style="text-align:center;" | (P8/2, P5) [10]
| | (P8/2, P5) [10]
| style="text-align:center;" | half-8ve decatonic
| | half-8ve decatonic
| | (lopsided unless 5th is quite flat)
| | (lopsided unless 5th is quite flat)
|-
|-
| style="text-align:center;" | 6L 4s
| | 6L 4s
| style="text-align:center;" | (P8/2, P5/3) [10]
| | (P8/2, P5/3) [10]
| style="text-align:center;" | half-8ve third-5th decatonic
| | half-8ve third-5th decatonic
| |  
| |  
|-
|-
| style="text-align:center;" | 7L 3s
| | 7L 3s
| style="text-align:center;" | (P8, P5/2) [10]
| | (P8, P5/2) [10]
| style="text-align:center;" | half-5th decatonic
| | half-5th decatonic
| | ninth-WW5th
| | ninth-WW5th
|-
|-
| style="text-align:center;" | 8L 2s
| | 8L 2s
| style="text-align:center;" | (P8/2, P4/4) [10]
| | (P8/2, P4/4) [10]
| style="text-align:center;" | half-8ve quarter-4th decatonic
| | half-8ve quarter-4th decatonic
| | half-8ve quarter-12th
| | half-8ve quarter-12th
|-
|-
| style="text-align:center;" | 9L 1s
| | 9L 1s
| style="text-align:center;" | (P8, P4/2) [10]
| | (P8, P4/2) [10]
| style="text-align:center;" | quarter-4th decatonic
| | quarter-4th decatonic
| |  
| |  
|}
|}
Line 2,865: Line 2,872:
This table lists all pergens up to quarter-splits, with all edos that support them. Partial support is indicated with an asterisk. The generator's keyspan depends on the multigen's keyspan, and thus on the 5th's keyspan. The latter is occasionally ambiguous, as in 13-edo and 18-edo. Both of these edos are incompatible with heptatonic notation, and 13edo's half-5th pergen is actually notated as a half-upfifth. 13b-edo and 18b-edo are listed as well. 6-edo, 11-edo and 23-edo could also be considered ambiguous.
This table lists all pergens up to quarter-splits, with all edos that support them. Partial support is indicated with an asterisk. The generator's keyspan depends on the multigen's keyspan, and thus on the 5th's keyspan. The latter is occasionally ambiguous, as in 13-edo and 18-edo. Both of these edos are incompatible with heptatonic notation, and 13edo's half-5th pergen is actually notated as a half-upfifth. 13b-edo and 18b-edo are listed as well. 6-edo, 11-edo and 23-edo could also be considered ambiguous.


{| class="wikitable"
{| class="wikitable" style="text-align:center;"  
|-
|-
! colspan="2" | pergen
! colspan="2" | pergen
! | supporting edos (12-31 only)
! | supporting edos (12-31 only)
|-
|-
| style="text-align:center;" | (P8, P5)
| | (P8, P5)
| style="text-align:center;" | unsplit
| | unsplit
| style="text-align:center;" | 12, 13, 13b, 14*, 15*, 16, 17, 18, 18b*, 19, 20*,
| | 12, 13, 13b, 14*, 15*, 16, 17, 18, 18b*, 19, 20*,


21*, 22, 23, 24*, 25*, 26, 27, 28*, 29, 30*, 31
21*, 22, 23, 24*, 25*, 26, 27, 28*, 29, 30*, 31
Line 2,880: Line 2,887:
! |  
! |  
|-
|-
| style="text-align:center;" | (P8/2, P5)
| | (P8/2, P5)
| style="text-align:center;" | half-8ve
| | half-8ve
| style="text-align:center;" | 12, 14, 16, 18, 18b, 20*, 22, 24*, 26, 28*, 30*
| | 12, 14, 16, 18, 18b, 20*, 22, 24*, 26, 28*, 30*
|-
|-
| style="text-align:center;" | (P8, P4/2)
| | (P8, P4/2)
| style="text-align:center;" | half-4th
| | half-4th
| style="text-align:center;" | 13b, 14, 15*, 18b*, 19, 20*, 23, 24, 25*, 28*, 29, 30*
| | 13b, 14, 15*, 18b*, 19, 20*, 23, 24, 25*, 28*, 29, 30*
|-
|-
| style="text-align:center;" | (P8, P5/2)
| | (P8, P5/2)
| style="text-align:center;" | half-5th
| | half-5th
| style="text-align:center;" | 13, 14*, 17, 18b, 20*, 21*, 24, 27, 28*, 30*, 31
| | 13, 14*, 17, 18b, 20*, 21*, 24, 27, 28*, 30*, 31
|-
|-
| style="text-align:center;" | (P8/2, P4/2)
| | (P8/2, P4/2)
| style="text-align:center;" | half-everything
| | half-everything
| style="text-align:center;" | 14, 18b, 20*, 24, 28*, 30*
| | 14, 18b, 20*, 24, 28*, 30*
|-
|-
! | thirds
! | thirds
Line 2,900: Line 2,907:
! |  
! |  
|-
|-
| style="text-align:center;" | (P8/3, P5)
| | (P8/3, P5)
| style="text-align:center;" | third-8ve
| | third-8ve
| style="text-align:center;" | 12, 15, 18, 18b*, 21, 24*, 27, 30*
| | 12, 15, 18, 18b*, 21, 24*, 27, 30*
|-
|-
| style="text-align:center;" | (P8, P4/3)
| | (P8, P4/3)
| style="text-align:center;" | third-4th
| | third-4th
| style="text-align:center;" | 13b, 14*, 15, 21*, 22, 28*, 29, 30*
| | 13b, 14*, 15, 21*, 22, 28*, 29, 30*
|-
|-
| style="text-align:center;" | (P8, P5/3)
| | (P8, P5/3)
| style="text-align:center;" | third-5th
| | third-5th
| style="text-align:center;" | 15*, 16, 20*, 21, 25*, 26, 30*, 31
| | 15*, 16, 20*, 21, 25*, 26, 30*, 31
|-
|-
| style="text-align:center;" | (P8, P11/3)
| | (P8, P11/3)
| style="text-align:center;" | third-11th
| | third-11th
| style="text-align:center;" | 13, 15, 17, 21, 23, 30*
| | 13, 15, 17, 21, 23, 30*
|-
|-
| style="text-align:center;" | (P8/3, P4/2)
| | (P8/3, P4/2)
| style="text-align:center;" | third-8ve, half-4th
| | third-8ve, half-4th
| style="text-align:center;" | 15, 18b*, 24, 30*
| | 15, 18b*, 24, 30*
|-
|-
| style="text-align:center;" | (P8/3, P5/2)
| | (P8/3, P5/2)
| style="text-align:center;" | third-8ve, half-5th
| | third-8ve, half-5th
| style="text-align:center;" | 18b, 21, 24, 27, 30
| | 18b, 21, 24, 27, 30
|-
|-
| style="text-align:center;" | (P8/2, P4/3)
| | (P8/2, P4/3)
| style="text-align:center;" | half-8ve, third-4th
| | half-8ve, third-4th
| style="text-align:center;" | 14, 22, 28*, 30
| | 14, 22, 28*, 30
|-
|-
| style="text-align:center;" | (P8/2, P5/3)
| | (P8/2, P5/3)
| style="text-align:center;" | half-8ve, third-5th
| | half-8ve, third-5th
| style="text-align:center;" | 16, 20*, 26, 30*
| | 16, 20*, 26, 30*
|-
|-
| style="text-align:center;" | (P8/2, P11/3)
| | (P8/2, P11/3)
| style="text-align:center;" | half-8ve, third-11th
| | half-8ve, third-11th
| style="text-align:center;" | 19, 30
| | 19, 30
|-
|-
| style="text-align:center;" | (P8/3, P4/3)
| | (P8/3, P4/3)
| style="text-align:center;" | third-everything
| | third-everything
| style="text-align:center;" | 15, 21, 30*
| | 15, 21, 30*
|-
|-
! | quarters
! | quarters
Line 2,944: Line 2,951:
! |  
! |  
|-
|-
| style="text-align:center;" | (P8/4, P5)
| | (P8/4, P5)
| style="text-align:center;" | quarter-8ve
| | quarter-8ve
| style="text-align:center;" | 12, 16, 20, 24*, 28
| | 12, 16, 20, 24*, 28
|-
|-
| style="text-align:center;" | (P8, P4/4)
| | (P8, P4/4)
| style="text-align:center;" | quarter-4th
| | quarter-4th
| style="text-align:center;" | 18b*, 19, 20*, 28, 29, 30*
| | 18b*, 19, 20*, 28, 29, 30*
|-
|-
| style="text-align:center;" | (P8, P5/4)
| | (P8, P5/4)
| style="text-align:center;" | quarter-5th
| | quarter-5th
| style="text-align:center;" | 13, 14*, 20, 21*, 27, 28*
| | 13, 14*, 20, 21*, 27, 28*
|-
|-
| style="text-align:center;" | (P8, P11/4)
| | (P8, P11/4)
| style="text-align:center;" | quarter-11th
| | quarter-11th
| style="text-align:center;" | 14, 17, 20, 28*, 31
| | 14, 17, 20, 28*, 31
|-
|-
| style="text-align:center;" | (P8, P12/4)
| | (P8, P12/4)
| style="text-align:center;" | quarter-12th
| | quarter-12th
| style="text-align:center;" | 13b, 15*, 18b, 20*, 23, 25*, 28, 30*
| | 13b, 15*, 18b, 20*, 23, 25*, 28, 30*
|-
|-
| style="text-align:center;" | (P8/4, P4/2)
| | (P8/4, P4/2)
| style="text-align:center;" | quarter-8ve, half-4th
| | quarter-8ve, half-4th
| style="text-align:center;" | 20, 24, 28
| | 20, 24, 28
|-
|-
| style="text-align:center;" | (P8/2, M2/4)
| | (P8/2, M2/4)
| style="text-align:center;" | half-8ve, quarter-tone
| | half-8ve, quarter-tone
| style="text-align:center;" | 18, 20, 22, 24, 26, 28
| | 18, 20, 22, 24, 26, 28
|-
|-
| style="text-align:center;" | (P8/2, P4/4)
| | (P8/2, P4/4)
| style="text-align:center;" | half-8ve, quarter-4th
| | half-8ve, quarter-4th
| style="text-align:center;" | 18b, 20*, 28, 30*
| | 18b, 20*, 28, 30*
|-
|-
| style="text-align:center;" | (P8/2, P5/4)
| | (P8/2, P5/4)
| style="text-align:center;" | half-8ve, quarter-5th
| | half-8ve, quarter-5th
| style="text-align:center;" | 14, 20, 28*
| | 14, 20, 28*
|-
|-
| style="text-align:center;" | (P8/4, P4/3)
| | (P8/4, P4/3)
| style="text-align:center;" | quarter-8ve, third-4th
| | quarter-8ve, third-4th
| style="text-align:center;" | 28
| | 28
|-
|-
| style="text-align:center;" | (P8/4, P5/3)
| | (P8/4, P5/3)
| style="text-align:center;" | quarter-8ve, third-5th
| | quarter-8ve, third-5th
| style="text-align:center;" | 16, 20
| | 16, 20
|-
|-
| style="text-align:center;" | (P8/4, P11/3)
| | (P8/4, P11/3)
| style="text-align:center;" | quarter-8ve, third-11th
| | quarter-8ve, third-11th
| style="text-align:center;" |  
| |  
|-
|-
| style="text-align:center;" | (P8/3, P4/4)
| | (P8/3, P4/4)
| style="text-align:center;" | third-8ve, quarter-4th
| | third-8ve, quarter-4th
| style="text-align:center;" | 18b*, 30
| | 18b*, 30
|-
|-
| style="text-align:center;" | (P8/3, P5/4)
| | (P8/3, P5/4)
| style="text-align:center;" | third-8ve, quarter-5th
| | third-8ve, quarter-5th
| style="text-align:center;" | 21, 27
| | 21, 27
|-
|-
| style="text-align:center;" | (P8/3, P11/4)
| | (P8/3, P11/4)
| style="text-align:center;" | third-8ve, quarter-11th
| | third-8ve, quarter-11th
| style="text-align:center;" |  
| |  
|-
|-
| style="text-align:center;" | (P8/3, P12/4)
| | (P8/3, P12/4)
| style="text-align:center;" | third-8ve, quarter-12th
| | third-8ve, quarter-12th
| style="text-align:center;" | 15, 18b, 30*
| | 15, 18b, 30*
|-
|-
| style="text-align:center;" | (P8/4, P4/4)
| | (P8/4, P4/4)
| style="text-align:center;" | quarter-everything
| | quarter-everything
| style="text-align:center;" | 20, 28
| | 20, 28
|}
|}
The edos that support the fewest pergens are prime-number edos like 11edo or 13edo. The most "pergen-friendly" edos tend to be ones in which the circle of 5ths doesn't reach every edostep. For example, 24edo supports all half-split pergens, since both P8 and P5 map to an even number of edosteps. 72edo supports all half-splits and all third-splits. 15, 21 and 36 edo support many but not all third-splits (not those with m = 2 or n = 2).
The edos that support the fewest pergens are prime-number edos like 11edo or 13edo. The most "pergen-friendly" edos tend to be ones in which the circle of 5ths doesn't reach every edostep. For example, 24edo supports all half-split pergens, since both P8 and P5 map to an even number of edosteps. 72edo supports all half-splits and all third-splits. 15, 21 and 36 edo support many but not all third-splits (not those with m = 2 or n = 2).
Line 3,036: Line 3,043:
To find the pergen, find the edo, then find the row that corresponds to the period, then find the column that corresponds to the generator. It appears, but has yet to be formally proven, that the number of P/G combinations that N-edo supports is (N-1)/2 rounded down. If we include the trivial combination where P = 1 edostep, the number of combinations would be N/2 rounded up.  
To find the pergen, find the edo, then find the row that corresponds to the period, then find the column that corresponds to the generator. It appears, but has yet to be formally proven, that the number of P/G combinations that N-edo supports is (N-1)/2 rounded down. If we include the trivial combination where P = 1 edostep, the number of combinations would be N/2 rounded up.  


{| class="wikitable"
{| class="wikitable" style="text-align:center;"  
|-
|-
! | EDO
! | EDO
Line 3,058: Line 3,065:
! | 5
! | 5
! | 5 = P8
! | 5 = P8
| style="text-align:center;" | P4/2
| | P4/2
| style="text-align:center;" | P5
| | P5
| style="text-align:center;" |  
| |  
| style="text-align:center;" |  
| |  
| style="text-align:center;" |  
| |  
| style="text-align:center;" |  
| |  
| style="text-align:center;" |  
| |  
| style="text-align:center;" |  
| |  
| style="text-align:center;" |  
| |  
| style="text-align:center;" |  
| |  
| style="text-align:center;" |  
| |  
|-
|-
! | 6
! | 6
! | 6 = P8
! | 6 = P8
| style="text-align:center;" | P4/2
| | P4/2
| style="text-align:center;" | -
| | -
| style="text-align:center;" |  
| |  
| style="text-align:center;" |  
| |  
| style="text-align:center;" |  
| |  
| style="text-align:center;" |  
| |  
| style="text-align:center;" |  
| |  
| style="text-align:center;" |  
| |  
| style="text-align:center;" |  
| |  
| style="text-align:center;" |  
| |  
| style="text-align:center;" |  
| |  
|-
|-
! | "
! | "
! | 3 = P8/2
! | 3 = P8/2
| style="text-align:center;" | P5
| | P5
| style="text-align:center;" |  
| |  
| style="text-align:center;" |  
| |  
| style="text-align:center;" |  
| |  
| style="text-align:center;" |  
| |  
| style="text-align:center;" |  
| |  
| style="text-align:center;" |  
| |  
| style="text-align:center;" |  
| |  
| style="text-align:center;" |  
| |  
| style="text-align:center;" |  
| |  
| style="text-align:center;" |  
| |  
|-
|-
! | 7
! | 7
! | 7 = P8
! | 7 = P8
| style="text-align:center;" | P4/3
| | P4/3
| style="text-align:center;" | P5/2
| | P5/2
| style="text-align:center;" | P5
| | P5
| style="text-align:center;" |  
| |  
| style="text-align:center;" |  
| |  
| style="text-align:center;" |  
| |  
| style="text-align:center;" |  
| |  
| style="text-align:center;" |  
| |  
| style="text-align:center;" |  
| |  
| style="text-align:center;" |  
| |  
| style="text-align:center;" |  
| |  
|-
|-
! | 8
! | 8
! | 8 = P8
! | 8 = P8
| style="text-align:center;" | P4/3
| | P4/3
| style="text-align:center;" | -
| | -
| style="text-align:center;" | P5
| | P5
| style="text-align:center;" |  
| |  
| style="text-align:center;" |  
| |  
| style="text-align:center;" |  
| |  
| style="text-align:center;" |  
| |  
| style="text-align:center;" |  
| |  
| style="text-align:center;" |  
| |  
| style="text-align:center;" |  
| |  
| style="text-align:center;" |  
| |  
|-
|-
! | "
! | "
! | 4 = P8/2
! | 4 = P8/2
| style="text-align:center;" | P5
| | P5
| style="text-align:center;" | -
| | -
| style="text-align:center;" |  
| |  
| style="text-align:center;" |  
| |  
| style="text-align:center;" |  
| |  
| style="text-align:center;" |  
| |  
| style="text-align:center;" |  
| |  
| style="text-align:center;" |  
| |  
| style="text-align:center;" |  
| |  
| style="text-align:center;" |  
| |  
| style="text-align:center;" |  
| |  
|-
|-
! | 9
! | 9
! | 9 = P8
! | 9 = P8
| style="text-align:center;" | P4/4
| | P4/4
| style="text-align:center;" | P4/2
| | P4/2
| style="text-align:center;" | -
| | -
| style="text-align:center;" | P5
| | P5
| style="text-align:center;" |  
| |  
| style="text-align:center;" |  
| |  
| style="text-align:center;" |  
| |  
| style="text-align:center;" |  
| |  
| style="text-align:center;" |  
| |  
| style="text-align:center;" |  
| |  
| style="text-align:center;" |  
| |  
|-
|-
! | "
! | "
! | 3 = P8/3
! | 3 = P8/3
| style="text-align:center;" | P5
| | P5
| style="text-align:center;" |  
| |  
| style="text-align:center;" |  
| |  
| style="text-align:center;" |  
| |  
| style="text-align:center;" |  
| |  
| style="text-align:center;" |  
| |  
| style="text-align:center;" |  
| |  
| style="text-align:center;" |  
| |  
| style="text-align:center;" |  
| |  
| style="text-align:center;" |  
| |  
| style="text-align:center;" |  
| |  
|-
|-
! | 10
! | 10
! | 10 = P8
! | 10 = P8
| style="text-align:center;" | P4/4
| | P4/4
| style="text-align:center;" | -
| | -
| style="text-align:center;" | P5/2
| | P5/2
| style="text-align:center;" | -
| | -
| style="text-align:center;" |  
| |  
| style="text-align:center;" |  
| |  
| style="text-align:center;" |  
| |  
| style="text-align:center;" |  
| |  
| style="text-align:center;" |  
| |  
| style="text-align:center;" |  
| |  
| style="text-align:center;" |  
| |  
|-
|-
! | "
! | "
! | 5 = P8/2
! | 5 = P8/2
| style="text-align:center;" | P5
| | P5
| style="text-align:center;" | P4/2
| | P4/2
| style="text-align:center;" |  
| |  
| style="text-align:center;" |  
| |  
| style="text-align:center;" |  
| |  
| style="text-align:center;" |  
| |  
| style="text-align:center;" |  
| |  
| style="text-align:center;" |  
| |  
| style="text-align:center;" |  
| |  
| style="text-align:center;" |  
| |  
| style="text-align:center;" |  
| |  
|-
|-
! | 11
! | 11
! | 11 = P8
! | 11 = P8
| style="text-align:center;" | P4/5
| | P4/5
| style="text-align:center;" | P5/3
| | P5/3
| style="text-align:center;" | P5/2
| | P5/2
| style="text-align:center;" | P11/4
| | P11/4
| style="text-align:center;" | P5
| | P5
| style="text-align:center;" |  
| |  
| style="text-align:center;" |  
| |  
| style="text-align:center;" |  
| |  
| style="text-align:center;" |  
| |  
| style="text-align:center;" |  
| |  
| style="text-align:center;" |  
| |  
|-
|-
! | 12
! | 12
! | 12 = P8
! | 12 = P8
| style="text-align:center;" | P4/5
| | P4/5
| style="text-align:center;" | -
| | -
| style="text-align:center;" | -
| | -
| style="text-align:center;" | -
| | -
| style="text-align:center;" | P5
| | P5
| style="text-align:center;" |  
| |  
| style="text-align:center;" |  
| |  
| style="text-align:center;" |  
| |  
| style="text-align:center;" |  
| |  
| style="text-align:center;" |  
| |  
| style="text-align:center;" |  
| |  
|-
|-
! | "
! | "
! | 6 = P8/2
! | 6 = P8/2
| style="text-align:center;" | P5
| | P5
| style="text-align:center;" | -
| | -
| style="text-align:center;" | -
| | -
| style="text-align:center;" |  
| |  
| style="text-align:center;" |  
| |  
| style="text-align:center;" |  
| |  
| style="text-align:center;" |  
| |  
| style="text-align:center;" |  
| |  
| style="text-align:center;" |  
| |  
| style="text-align:center;" |  
| |  
| style="text-align:center;" |  
| |  
|-
|-
! | "
! | "
! | 4 = P8/3
! | 4 = P8/3
| style="text-align:center;" | P5
| | P5
| style="text-align:center;" | -
| | -
| style="text-align:center;" |  
| |  
| style="text-align:center;" |  
| |  
| style="text-align:center;" |  
| |  
| style="text-align:center;" |  
| |  
| style="text-align:center;" |  
| |  
| style="text-align:center;" |  
| |  
| style="text-align:center;" |  
| |  
| style="text-align:center;" |  
| |  
| style="text-align:center;" |  
| |  
|-
|-
! | "
! | "
! | 3 = P8/4
! | 3 = P8/4
| style="text-align:center;" | P5
| | P5
| style="text-align:center;" |  
| |  
| style="text-align:center;" |  
| |  
| style="text-align:center;" |  
| |  
| style="text-align:center;" |  
| |  
| style="text-align:center;" |  
| |  
| style="text-align:center;" |  
| |  
| style="text-align:center;" |  
| |  
| style="text-align:center;" |  
| |  
| style="text-align:center;" |  
| |  
| style="text-align:center;" |  
| |  
|-
|-
! | 13b
! | 13b
! | 13 = P8
! | 13 = P8
| style="text-align:center;" | P4/6
| | P4/6
| style="text-align:center;" | P4/3
| | P4/3
| style="text-align:center;" | P4/2
| | P4/2
| style="text-align:center;" | P12/5
| | P12/5
| style="text-align:center;" | P12/4
| | P12/4
| style="text-align:center;" | P5
| | P5
| style="text-align:center;" |  
| |  
| style="text-align:center;" |  
| |  
| style="text-align:center;" |  
| |  
| style="text-align:center;" |  
| |  
| style="text-align:center;" |  
| |  
|-
|-
! | 14
! | 14
! | 14 = P8
! | 14 = P8
| style="text-align:center;" | P4/6
| | P4/6
| style="text-align:center;" | -
| | -
| style="text-align:center;" | P4/2
| | P4/2
| style="text-align:center;" | -
| | -
| style="text-align:center;" | P11/4
| | P11/4
| style="text-align:center;" | -
| | -
| style="text-align:center;" |  
| |  
| style="text-align:center;" |  
| |  
| style="text-align:center;" |  
| |  
| style="text-align:center;" |  
| |  
| style="text-align:center;" |  
| |  
|-
|-
! | "
! | "
! | 7 = P8/2
! | 7 = P8/2
| style="text-align:center;" | P5
| | P5
| style="text-align:center;" | P4/3
| | P4/3
| style="text-align:center;" | P4/2
| | P4/2
| style="text-align:center;" |  
| |  
| style="text-align:center;" |  
| |  
| style="text-align:center;" |  
| |  
| style="text-align:center;" |  
| |  
| style="text-align:center;" |  
| |  
| style="text-align:center;" |  
| |  
| style="text-align:center;" |  
| |  
| style="text-align:center;" |  
| |  
|-
|-
! | 15
! | 15
! | 15 = P8
! | 15 = P8
| style="text-align:center;" | P4/6
| | P4/6
| style="text-align:center;" | P4/3
| | P4/3
| style="text-align:center;" | -
| | -
| style="text-align:center;" | P12/6
| | P12/6
| style="text-align:center;" | -
| | -
| style="text-align:center;" | -
| | -
| style="text-align:center;" | P11/3
| | P11/3
| style="text-align:center;" |  
| |  
| style="text-align:center;" |  
| |  
| style="text-align:center;" |  
| |  
| style="text-align:center;" |  
| |  
|-
|-
! | "
! | "
! | 5 = P8/3
! | 5 = P8/3
| style="text-align:center;" | P5
| | P5
| style="text-align:center;" | P4/2
| | P4/2
| style="text-align:center;" |  
| |  
| style="text-align:center;" |  
| |  
| style="text-align:center;" |  
| |  
| style="text-align:center;" |  
| |  
| style="text-align:center;" |  
| |  
| style="text-align:center;" |  
| |  
| style="text-align:center;" |  
| |  
| style="text-align:center;" |  
| |  
| style="text-align:center;" |  
| |  
|-
|-
! | "
! | "
! | 3 = P8/5
! | 3 = P8/5
| style="text-align:center;" | P4/3
| | P4/3
| style="text-align:center;" |  
| |  
| style="text-align:center;" |  
| |  
| style="text-align:center;" |  
| |  
| style="text-align:center;" |  
| |  
| style="text-align:center;" |  
| |  
| style="text-align:center;" |  
| |  
| style="text-align:center;" |  
| |  
| style="text-align:center;" |  
| |  
| style="text-align:center;" |  
| |  
| style="text-align:center;" |  
| |  
|-
|-
! | 16
! | 16
! | 16 = P8
! | 16 = P8
| style="text-align:center;" | P4/7
| | P4/7
| style="text-align:center;" | -
| | -
| style="text-align:center;" | P5/3
| | P5/3
| style="text-align:center;" | -
| | -
| style="text-align:center;" | P12/5
| | P12/5
| style="text-align:center;" | -
| | -
| style="text-align:center;" | P5
| | P5
| style="text-align:center;" |  
| |  
| style="text-align:center;" |  
| |  
| style="text-align:center;" |  
| |  
| style="text-align:center;" |  
| |  
|-
|-
! | "
! | "
! | 8 = P8/2
! | 8 = P8/2
| style="text-align:center;" | P5
| | P5
| style="text-align:center;" | -
| | -
| style="text-align:center;" | P5/3
| | P5/3
| style="text-align:center;" | -
| | -
| style="text-align:center;" |  
| |  
| style="text-align:center;" |  
| |  
| style="text-align:center;" |  
| |  
| style="text-align:center;" |  
| |  
| style="text-align:center;" |  
| |  
| style="text-align:center;" |  
| |  
| style="text-align:center;" |  
| |  
|-
|-
! | "
! | "
! | 4 = P8/4
! | 4 = P8/4
| style="text-align:center;" | P5
| | P5
| style="text-align:center;" | -
| | -
| style="text-align:center;" |  
| |  
| style="text-align:center;" |  
| |  
| style="text-align:center;" |  
| |  
| style="text-align:center;" |  
| |  
| style="text-align:center;" |  
| |  
| style="text-align:center;" |  
| |  
| style="text-align:center;" |  
| |  
| style="text-align:center;" |  
| |  
| style="text-align:center;" |  
| |  
|-
|-
! | 17
! | 17
! | 17 = P8
! | 17 = P8
| style="text-align:center;" | P4/7
| | P4/7
| style="text-align:center;" | P5/5
| | P5/5
| style="text-align:center;" | P11/8
| | P11/8
| style="text-align:center;" | P11/6
| | P11/6
| style="text-align:center;" | P5/2
| | P5/2
| style="text-align:center;" | P11/4
| | P11/4
| style="text-align:center;" | P5
| | P5
| style="text-align:center;" | P11/3
| | P11/3
| style="text-align:center;" |  
| |  
| style="text-align:center;" |  
| |  
| style="text-align:center;" |  
| |  
|-
|-
! | 18b
! | 18b
! | 18 = P8
! | 18 = P8
| style="text-align:center;" | P4/8
| | P4/8
| style="text-align:center;" | -
| | -
| style="text-align:center;" | -
| | -
| style="text-align:center;" | -
| | -
| style="text-align:center;" | P5/2
| | P5/2
| style="text-align:center;" | -
| | -
| style="text-align:center;" | P12/4
| | P12/4
| style="text-align:center;" | -
| | -
| style="text-align:center;" |  
| |  
| style="text-align:center;" |  
| |  
| style="text-align:center;" |  
| |  
|-
|-
! | "
! | "
! | 9 = P8/2
! | 9 = P8/2
| style="text-align:center;" | P5
| | P5
| style="text-align:center;" | P4/4
| | P4/4
| style="text-align:center;" | -
| | -
| style="text-align:center;" | P4/2
| | P4/2
| style="text-align:center;" |  
| |  
| style="text-align:center;" |  
| |  
| style="text-align:center;" |  
| |  
| style="text-align:center;" |  
| |  
| style="text-align:center;" |  
| |  
| style="text-align:center;" |  
| |  
| style="text-align:center;" |  
| |  
|-
|-
! | "
! | "
! | 6 = P8/3
! | 6 = P8/3
| style="text-align:center;" | P5/2
| | P5/2
| style="text-align:center;" | -
| | -
| style="text-align:center;" | -
| | -
| style="text-align:center;" |  
| |  
| style="text-align:center;" |  
| |  
| style="text-align:center;" |  
| |  
| style="text-align:center;" |  
| |  
| style="text-align:center;" |  
| |  
| style="text-align:center;" |  
| |  
| style="text-align:center;" |  
| |  
| style="text-align:center;" |  
| |  
|-
|-
! | "
! | "
! | 3 = P8/6
! | 3 = P8/6
| style="text-align:center;" | P5
| | P5
| style="text-align:center;" |  
| |  
| style="text-align:center;" |  
| |  
| style="text-align:center;" |  
| |  
| style="text-align:center;" |  
| |  
| style="text-align:center;" |  
| |  
| style="text-align:center;" |  
| |  
| style="text-align:center;" |  
| |  
| style="text-align:center;" |  
| |  
| style="text-align:center;" |  
| |  
| style="text-align:center;" |  
| |  
|-
|-
! | 19
! | 19
! | 19 = P8
! | 19 = P8
| style="text-align:center;" | P4/8
| | P4/8
| style="text-align:center;" | P4/4
| | P4/4
| style="text-align:center;" | P11/9
| | P11/9
| style="text-align:center;" | P4/2
| | P4/2
| style="text-align:center;" | P12/6
| | P12/6
| style="text-align:center;" | P12/5
| | P12/5
| style="text-align:center;" | WWP5/7
| | WWP5/7
| style="text-align:center;" | P5
| | P5
| style="text-align:center;" | P11/3
| | P11/3
| style="text-align:center;" |  
| |  
| style="text-align:center;" |  
| |  
|-
|-
! | 20
! | 20
! | 20 = P8
! | 20 = P8
| style="text-align:center;" | P4/8
| | P4/8
| style="text-align:center;" | -
| | -
| style="text-align:center;" | P5/4
| | P5/4
| style="text-align:center;" | -
| | -
| style="text-align:center;" | -
| | -
| style="text-align:center;" | -
| | -
| style="text-align:center;" | P11/4
| | P11/4
| style="text-align:center;" | -
| | -
| style="text-align:center;" | W<span style="vertical-align: super;">3</span>P5/8
| | W<span style="vertical-align: super;">3</span>P5/8
| style="text-align:center;" |  
| |  
| style="text-align:center;" |  
| |  
|-
|-
! | "
! | "
! | 10 = P8/2
! | 10 = P8/2
| style="text-align:center;" | M2/4
| | M2/4
| style="text-align:center;" | -
| | -
| style="text-align:center;" | P5/4
| | P5/4
| style="text-align:center;" | -
| | -
| style="text-align:center;" | -
| | -
| style="text-align:center;" |  
| |  
| style="text-align:center;" |  
| |  
| style="text-align:center;" |  
| |  
| style="text-align:center;" |  
| |  
| style="text-align:center;" |  
| |  
| style="text-align:center;" |  
| |  
|-
|-
! | "
! | "
! | 5 = P8/4
! | 5 = P8/4
| style="text-align:center;" | P4/2
| | P4/2
| style="text-align:center;" | P5
| | P5
| style="text-align:center;" |  
| |  
| style="text-align:center;" |  
| |  
| style="text-align:center;" |  
| |  
| style="text-align:center;" |  
| |  
| style="text-align:center;" |  
| |  
| style="text-align:center;" |  
| |  
| style="text-align:center;" |  
| |  
| style="text-align:center;" |  
| |  
| style="text-align:center;" |  
| |  
|-
|-
! | "
! | "
! | 4 = P8/5
! | 4 = P8/5
| style="text-align:center;" | P5/4
| | P5/4
| style="text-align:center;" | -
| | -
| style="text-align:center;" |  
| |  
| style="text-align:center;" |  
| |  
| style="text-align:center;" |  
| |  
| style="text-align:center;" |  
| |  
| style="text-align:center;" |  
| |  
| style="text-align:center;" |  
| |  
| style="text-align:center;" |  
| |  
| style="text-align:center;" |  
| |  
| style="text-align:center;" |  
| |  
|-
|-
! | 21
! | 21
! | 21 = P8
! | 21 = P8
| style="text-align:center;" | P4/9
| | P4/9
| style="text-align:center;" | P5/6
| | P5/6
| style="text-align:center;" | -
| | -
| style="text-align:center;" | P5/3
| | P5/3
| style="text-align:center;" | P11/6
| | P11/6
| style="text-align:center;" | -
| | -
| style="text-align:center;" | -
| | -
| style="text-align:center;" | W<span style="vertical-align: super;">3</span>P4/9
| | W<span style="vertical-align: super;">3</span>P4/9
| style="text-align:center;" | -
| | -
| style="text-align:center;" | P11/3
| | P11/3
| style="text-align:center;" |  
| |  
|-
|-
! | "
! | "
! | 7 = P8/3
! | 7 = P8/3
| style="text-align:center;" | P5/2
| | P5/2
| style="text-align:center;" | P5
| | P5
| style="text-align:center;" | P4/3
| | P4/3
| style="text-align:center;" |  
| |  
| style="text-align:center;" |  
| |  
| style="text-align:center;" |  
| |  
| style="text-align:center;" |  
| |  
| style="text-align:center;" |  
| |  
| style="text-align:center;" |  
| |  
| style="text-align:center;" |  
| |  
| style="text-align:center;" |  
| |  
|-
|-
! | "
! | "
! | 3 = P8/7
! | 3 = P8/7
| style="text-align:center;" | P5/3
| | P5/3
| style="text-align:center;" |  
| |  
| style="text-align:center;" |  
| |  
| style="text-align:center;" |  
| |  
| style="text-align:center;" |  
| |  
| style="text-align:center;" |  
| |  
| style="text-align:center;" |  
| |  
| style="text-align:center;" |  
| |  
| style="text-align:center;" |  
| |  
| style="text-align:center;" |  
| |  
| style="text-align:center;" |  
| |  
|-
|-
! | 22
! | 22
! | 22 = P8
! | 22 = P8
| style="text-align:center;" | P4/9
| | P4/9
| style="text-align:center;" | -
| | -
| style="text-align:center;" | P4/3
| | P4/3
| style="text-align:center;" | -
| | -
| style="text-align:center;" | P12/7
| | P12/7
| style="text-align:center;" | -
| | -
| style="text-align:center;" | P12/5
| | P12/5
| style="text-align:center;" | -
| | -
| style="text-align:center;" | P5
| | P5
| style="text-align:center;" | -
| | -
| style="text-align:center;" |  
| |  
|-
|-
! | "
! | "
! | 11 = P8/2
! | 11 = P8/2
| style="text-align:center;" | M2/4
| | M2/4
| style="text-align:center;" | P5
| | P5
| style="text-align:center;" | P4/3
| | P4/3
| style="text-align:center;" | P12/5
| | P12/5
| style="text-align:center;" | P12/7
| | P12/7
| style="text-align:center;" |  
| |  
| style="text-align:center;" |  
| |  
| style="text-align:center;" |  
| |  
| style="text-align:center;" |  
| |  
| style="text-align:center;" |  
| |  
| style="text-align:center;" |  
| |  
|-
|-
! | 23
! | 23
! | 23 = P8
! | 23 = P8
| style="text-align:center;" | P4/10
| | P4/10
| style="text-align:center;" | P4/5
| | P4/5
| style="text-align:center;" | P11/11
| | P11/11
| style="text-align:center;" | P12/9
| | P12/9
| style="text-align:center;" | P4/2
| | P4/2
| style="text-align:center;" | P12/6
| | P12/6
| style="text-align:center;" | WWP4/8
| | WWP4/8
| style="text-align:center;" | WWP4/7
| | WWP4/7
| style="text-align:center;" | P12/4
| | P12/4
| style="text-align:center;" | P5
| | P5
| style="text-align:center;" | P11/3
| | P11/3
|-
|-
! | 24
! | 24
! | 24 = P8
! | 24 = P8
| style="text-align:center;" | P4/10
| | P4/10
| style="text-align:center;" | -
| | -
| style="text-align:center;" | -
| | -
| style="text-align:center;" | -
| | -
| style="text-align:center;" | P4/2
| | P4/2
| style="text-align:center;" | -
| | -
| style="text-align:center;" | P5/2
| | P5/2
| style="text-align:center;" | -
| | -
| style="text-align:center;" | -
| | -
| style="text-align:center;" | -
| | -
| style="text-align:center;" | W<span style="vertical-align: super;">4</span>P5/10
| | W<span style="vertical-align: super;">4</span>P5/10
|-
|-
! | "
! | "
! | 12 = P8/2
! | 12 = P8/2
| style="text-align:center;" | M2/4
| | M2/4
| style="text-align:center;" | -
| | -
| style="text-align:center;" | -
| | -
| style="text-align:center;" | -
| | -
| style="text-align:center;" | P4/2
| | P4/2
| style="text-align:center;" |  
| |  
| style="text-align:center;" |  
| |  
| style="text-align:center;" |  
| |  
| style="text-align:center;" |  
| |  
| style="text-align:center;" |  
| |  
| style="text-align:center;" |  
| |  
|-
|-
! | "
! | "
! | 8 = P8/3
! | 8 = P8/3
| style="text-align:center;" | P5/2
| | P5/2
| style="text-align:center;" | -
| | -
| style="text-align:center;" | P4/2
| | P4/2
| style="text-align:center;" |  
| |  
| style="text-align:center;" |  
| |  
| style="text-align:center;" |  
| |  
| style="text-align:center;" |  
| |  
| style="text-align:center;" |  
| |  
| style="text-align:center;" |  
| |  
| style="text-align:center;" |  
| |  
| style="text-align:center;" |  
| |  
|-
|-
! | "
! | "
! | 6 = P8/4
! | 6 = P8/4
| style="text-align:center;" | P4/2
| | P4/2
| style="text-align:center;" | -
| | -
| style="text-align:center;" | -
| | -
| style="text-align:center;" |  
| |  
| style="text-align:center;" |  
| |  
| style="text-align:center;" |  
| |  
| style="text-align:center;" |  
| |  
| style="text-align:center;" |  
| |  
| style="text-align:center;" |  
| |  
| style="text-align:center;" |  
| |  
| style="text-align:center;" |  
| |  
|-
|-
! | "
! | "
! | 4 = P8/6
! | 4 = P8/6
| style="text-align:center;" | P4/2
| | P4/2
| style="text-align:center;" | -
| | -
| style="text-align:center;" |  
| |  
| style="text-align:center;" |  
| |  
| style="text-align:center;" |  
| |  
| style="text-align:center;" |  
| |  
| style="text-align:center;" |  
| |  
| style="text-align:center;" |  
| |  
| style="text-align:center;" |  
| |  
| style="text-align:center;" |  
| |  
| style="text-align:center;" |  
| |  
|-
|-
! | "
! | "
! | 3 = P8/8
! | 3 = P8/8
| style="text-align:center;" | P5
| | P5
| style="text-align:center;" |  
| |  
| style="text-align:center;" |  
| |  
| style="text-align:center;" |  
| |  
| style="text-align:center;" |  
| |  
| style="text-align:center;" |  
| |  
| style="text-align:center;" |  
| |  
| style="text-align:center;" |  
| |  
| style="text-align:center;" |  
| |  
| style="text-align:center;" |  
| |  
| style="text-align:center;" |  
| |  
|-
|-
! |  
! |  
! |  
! |  
! | 1
! | 1
Line 3,740: Line 3,747:
The closer two edos are in the scale tree, the smaller the splitting fractions in the pergen they make. Examples:
The closer two edos are in the scale tree, the smaller the splitting fractions in the pergen they make. Examples:


{| class="wikitable"
{| class="wikitable" style="text-align:center;"  
|-
|-
! |  
! |  
Line 3,754: Line 3,761:
|-
|-
! | 13b-edo
! | 13b-edo
| style="text-align:center;" | (P8, P5/7)
| | (P8, P5/7)
| style="text-align:center;" |  
| |  
| style="text-align:center;" |  
| |  
| style="text-align:center;" |  
| |  
| style="text-align:center;" |  
| |  
| style="text-align:center;" |  
| |  
| style="text-align:center;" |  
| |  
| style="text-align:center;" |  
| |  
| style="text-align:center;" |  
| |  
|-
|-
! | 14-edo
! | 14-edo
| style="text-align:center;" | (P8/2, P5)
| | (P8/2, P5)
| style="text-align:center;" | (P8, P4/6)
| | (P8, P4/6)
| style="text-align:center;" |  
| |  
| style="text-align:center;" |  
| |  
| style="text-align:center;" |  
| |  
| style="text-align:center;" |  
| |  
| style="text-align:center;" |  
| |  
| style="text-align:center;" |  
| |  
| style="text-align:center;" |  
| |  
|-
|-
! | 15-edo
! | 15-edo
| style="text-align:center;" | (P8/3, P5)
| | (P8/3, P5)
| style="text-align:center;" | (P8, W<span style="vertical-align: super;">5</span>P5/12)
| | (P8, W<span style="vertical-align: super;">5</span>P5/12)
| style="text-align:center;" | (P8, P4/6)
| | (P8, P4/6)
| style="text-align:center;" |  
| |  
| style="text-align:center;" |  
| |  
| style="text-align:center;" |  
| |  
| style="text-align:center;" |  
| |  
| style="text-align:center;" |  
| |  
| style="text-align:center;" |  
| |  
|-
|-
! | 16-edo
! | 16-edo
| style="text-align:center;" | (P8/4, P5)
| | (P8/4, P5)
| style="text-align:center;" | (P8, P12/5)
| | (P8, P12/5)
| style="text-align:center;" | (P8/2, P5)
| | (P8/2, P5)
| style="text-align:center;" | (P8, P5/9)
| | (P8, P5/9)
| style="text-align:center;" |  
| |  
| style="text-align:center;" |  
| |  
| style="text-align:center;" |  
| |  
| style="text-align:center;" |  
| |  
| style="text-align:center;" |  
| |  
|-
|-
! | 17-edo
! | 17-edo
| style="text-align:center;" | (P8, P5)
| | (P8, P5)
| style="text-align:center;" | (P8, WWP5/11)
| | (P8, WWP5/11)
| style="text-align:center;" | (P8, P11/4)
| | (P8, P11/4)
| style="text-align:center;" | (P8, P11/3)
| | (P8, P11/3)
| style="text-align:center;" | (P8/2, P4/7)
| | (P8/2, P4/7)
| style="text-align:center;" |  
| |  
| style="text-align:center;" |  
| |  
| style="text-align:center;" |  
| |  
| style="text-align:center;" |  
| |  
|-
|-
! | 18b-edo
! | 18b-edo
| style="text-align:center;" | (P8/6, P5)
| | (P8/6, P5)
| style="text-align:center;" | (P8, P12/4)
| | (P8, P12/4)
| style="text-align:center;" | (P8/2, P4/2)
| | (P8/2, P4/2)
| style="text-align:center;" | (P8/3, P12/4)
| | (P8/3, P12/4)
| style="text-align:center;" | (P8/2, P5)
| | (P8/2, P5)
| style="text-align:center;" | (P8, P5/10)
| | (P8, P5/10)
| style="text-align:center;" |  
| |  
| style="text-align:center;" |  
| |  
| style="text-align:center;" |  
| |  
|-
|-
! | 19-edo
! | 19-edo
| style="text-align:center;" | (P8, P5)
| | (P8, P5)
| style="text-align:center;" | (P8, P12/10)
| | (P8, P12/10)
| style="text-align:center;" | (P8, P4/2)
| | (P8, P4/2)
| style="text-align:center;" | (P8, P12/6)
| | (P8, P12/6)
| style="text-align:center;" | (P8, P12/5)
| | (P8, P12/5)
| style="text-align:center;" | (P8, P11/3)
| | (P8, P11/3)
| style="text-align:center;" | (P8, P4/8)
| | (P8, P4/8)
| style="text-align:center;" |  
| |  
| style="text-align:center;" |  
| |  
|-
|-
! | 20-edo
! | 20-edo
| style="text-align:center;" | (P8/4, P5)
| | (P8/4, P5)
| style="text-align:center;" | (P8, WWP4/16)
| | (P8, WWP4/16)
| style="text-align:center;" | (P8/2, P5/4)
| | (P8/2, P5/4)
| style="text-align:center;" | (P8/5, ^1)
| | (P8/5, ^1)
| style="text-align:center;" | (P8/4, P5/3)
| | (P8/4, P5/3)
| style="text-align:center;" | (P8, P11/4)
| | (P8, P11/4)
| style="text-align:center;" | (P8/2, P4/8)
| | (P8/2, P4/8)
| style="text-align:center;" | (P8, P4/8)
| | (P8, P4/8)
| style="text-align:center;" |  
| |  
|-
|-
! | 21-edo
! | 21-edo
| style="text-align:center;" | (P8/3, P5)
| | (P8/3, P5)
| style="text-align:center;" | (P8, W<span style="vertical-align: super;">3</span>P4/9)
| | (P8, W<span style="vertical-align: super;">3</span>P4/9)
| style="text-align:center;" | (P8/7, ^1)
| | (P8/7, ^1)
| style="text-align:center;" | (P8/3, P4/3)
| | (P8/3, P4/3)
| style="text-align:center;" | (P8, P5/3)
| | (P8, P5/3)
| style="text-align:center;" | (P8, P11/6)
| | (P8, P11/6)
| style="text-align:center;" | (P8/3, P5/2)
| | (P8/3, P5/2)
| style="text-align:center;" | (P8, P11/3)
| | (P8, P11/3)
| style="text-align:center;" | (P8, P5/12)
| | (P8, P5/12)
|-
|-
! | 22-edo
! | 22-edo
| style="text-align:center;" | (P8/2, P5)
| | (P8/2, P5)
| style="text-align:center;" | (P8, W<span style="vertical-align: super;">3</span>P4/15)
| | (P8, W<span style="vertical-align: super;">3</span>P4/15)
| style="text-align:center;" | (P8/2, P4/3)
| | (P8/2, P4/3)
| style="text-align:center;" | (P8, P4/3)
| | (P8, P4/3)
| style="text-align:center;" | (P8/2, P12/5)
| | (P8/2, P12/5)
| style="text-align:center;" | (P8, P5)
| | (P8, P5)
| style="text-align:center;" | (P8/2, P12/7)
| | (P8/2, P12/7)
| style="text-align:center;" | (P8, P12/5)
| | (P8, P12/5)
| style="text-align:center;" | (P8/2, M2/4)
| | (P8/2, M2/4)
|-
|-
! | 23-edo
! | 23-edo
| style="text-align:center;" | (P8, P4/5)
| | (P8, P4/5)
| style="text-align:center;" | (P8, WWP4/8)
| | (P8, WWP4/8)
| style="text-align:center;" | (P8, P4/2)
| | (P8, P4/2)
| style="text-align:center;" | (P8, P12/12)
| | (P8, P12/12)
| style="text-align:center;" | (P8, P5)
| | (P8, P5)
| style="text-align:center;" | (P8, P12/9)
| | (P8, P12/9)
| style="text-align:center;" | (P8, P12/4)
| | (P8, P12/4)
| style="text-align:center;" | (P8, P12/6)
| | (P8, P12/6)
| style="text-align:center;" | (P8, W<span style="vertical-align: super;">5</span>P5/16)
| | (P8, W<span style="vertical-align: super;">5</span>P5/16)
|-
|-
! | 24-edo
! | 24-edo
| style="text-align:center;" | (P8/12, ^1)
| | (P8/12, ^1)
| style="text-align:center;" | (P8, W<span style="vertical-align: super;">6</span>P4/14)
| | (P8, W<span style="vertical-align: super;">6</span>P4/14)
| style="text-align:center;" | (P8/2, P4/2)
| | (P8/2, P4/2)
| style="text-align:center;" | (P8/3, P4/2)
| | (P8/3, P4/2)
| style="text-align:center;" | (P8/8, P5)
| | (P8/8, P5)
| style="text-align:center;" | (P8, P5/2)
| | (P8, P5/2)
| style="text-align:center;" | (P8/6, P4/2)
| | (P8/6, P4/2)
| style="text-align:center;" | (P8, P4/2)
| | (P8, P4/2)
| style="text-align:center;" | (P8/4, P4/2)
| | (P8/4, P4/2)
|}
|}


Line 3,892: Line 3,899:
Array keyboards have a 2-dimensional layout of keys, and are very appropriate for rank-2 tunings. A good layout can be found from the tuning's pergen. First find an edo N-edo that is compatible with the pergen, then arrange the keys in N columns to the 8ve, with each row usually containing the multigen interval. The unsplit pergen in 7 columns:
Array keyboards have a 2-dimensional layout of keys, and are very appropriate for rank-2 tunings. A good layout can be found from the tuning's pergen. First find an edo N-edo that is compatible with the pergen, then arrange the keys in N columns to the 8ve, with each row usually containing the multigen interval. The unsplit pergen in 7 columns:


{| class="wikitable"
{| class="wikitable" style="text-align:center;"  
|-
|-
| style="text-align:center;" | D#
| | D#
| style="text-align:center;" |  
| |  
| style="text-align:center;" |  
| |  
| style="text-align:center;" |  
| |  
| style="text-align:center;" |  
| |  
| style="text-align:center;" |  
| |  
| style="text-align:center;" |  
| |  
| style="text-align:center;" |  
| |  
|-
|-
| style="text-align:center;" | D
| | D
| style="text-align:center;" | E
| | E
| style="text-align:center;" | F#
| | F#
| style="text-align:center;" | G#
| | G#
| style="text-align:center;" | A#
| | A#
| style="text-align:center;" |  
| |  
| style="text-align:center;" |  
| |  
| style="text-align:center;" |  
| |  
|-
|-
| style="text-align:center;" | Db
| | Db
| style="text-align:center;" | Eb
| | Eb
| style="text-align:center;" | F
| | F
| style="text-align:center;" | G
| | G
| style="text-align:center;" | A
| | A
| style="text-align:center;" | B
| | B
| style="text-align:center;" | C#
| | C#
| style="text-align:center;" | D#
| | D#
|-
|-
| style="text-align:center;" |  
| |  
| style="text-align:center;" |  
| |  
| style="text-align:center;" |  
| |  
| style="text-align:center;" | Gb
| | Gb
| style="text-align:center;" | Ab
| | Ab
| style="text-align:center;" | Bb
| | Bb
| style="text-align:center;" | C
| | C
| style="text-align:center;" | D
| | D
|-
|-
| style="text-align:center;" |  
| |  
| style="text-align:center;" |  
| |  
| style="text-align:center;" |  
| |  
| style="text-align:center;" |  
| |  
| style="text-align:center;" |  
| |  
| style="text-align:center;" |  
| |  
| style="text-align:center;" |  
| |  
| style="text-align:center;" | Db
| | Db
|}
|}
Higher notes are at the top of each column. The rows would actually be angled so that the two D's are at the same horizontal level. The vertical steps are A1 and the horizontal steps are M2, and the keyboard is defined as 7(A1, M2).
Higher notes are at the top of each column. The rows would actually be angled so that the two D's are at the same horizontal level. The vertical steps are A1 and the horizontal steps are M2, and the keyboard is defined as 7(A1, M2).
Line 3,943: Line 3,950:
The third-4th keyboard is 7(A1/3 = ^1 = vvA1, P4/3 = vM2 = ^^m2).
The third-4th keyboard is 7(A1/3 = ^1 = vvA1, P4/3 = vM2 = ^^m2).


{| class="wikitable"
{| class="wikitable" style="text-align:center;"  
|-
|-
| style="text-align:center;" | D#v
| | D#v
| style="text-align:center;" | E^
| | E^
| style="text-align:center;" | F#
| | F#
| style="text-align:center;" | G#v
| | G#v
| style="text-align:center;" | A^
| | A^
| style="text-align:center;" | B
| | B
| style="text-align:center;" | C#v
| | C#v
| style="text-align:center;" | D^
| | D^
|-
|-
| style="text-align:center;" | D^
| | D^
| style="text-align:center;" | E
| | E
| style="text-align:center;" | F#v
| | F#v
| style="text-align:center;" | G^
| | G^
| style="text-align:center;" | A
| | A
| style="text-align:center;" | Bv
| | Bv
| style="text-align:center;" | C^
| | C^
| style="text-align:center;" | D
| | D
|-
|-
| style="text-align:center;" | D
| | D
| style="text-align:center;" | Ev
| | Ev
| style="text-align:center;" | F^
| | F^
| style="text-align:center;" | G
| | G
| style="text-align:center;" | Av
| | Av
| style="text-align:center;" | B^
| | B^
| style="text-align:center;" | C
| | C
| style="text-align:center;" | Dv
| | Dv
|-
|-
| style="text-align:center;" | Dv
| | Dv
| style="text-align:center;" | Eb^
| | Eb^
| style="text-align:center;" | F
| | F
| style="text-align:center;" | Gv
| | Gv
| style="text-align:center;" | Ab^
| | Ab^
| style="text-align:center;" | Bb
| | Bb
| style="text-align:center;" | Cv
| | Cv
| style="text-align:center;" | Db^
| | Db^
|}
|}