26edo: Difference between revisions
started to simplify tables and links |
|||
Line 1: | Line 1: | ||
__FORCETOC__ | __FORCETOC__ | ||
''26edo'' divides the [[octave]] into 26 equal parts of 46.154 [[cent]]s each. It tempers out 81/80 in the [[5-limit]], making it a meantone tuning with a very flat fifth. In the [[7-limit]], it tempers out 50/49, 525/512 and 875/864, and supports [[ | ''26edo'' divides the [[octave]] into 26 equal parts of 46.154 [[cent]]s each. It tempers out 81/80 in the [[5-limit]], making it a meantone tuning with a very flat fifth. In the [[7-limit]], it tempers out 50/49, 525/512 and 875/864, and supports [[injera]], [[flattone]], [[Jubilismic clan#Lemba|lemba]] and [[Jubilismic clan#Doublewide|doublewide]] temperaments. It really comes into its own as a higher-limit temperament, being the smallest equal division which represents the [[13 odd limit]] [[consistent|consistently]]. 26edo has a very good approximation of the harmonic seventh ([[7/4]]). | ||
26edo's "minor sixth" is very close to phi (i. e., the golden ratio). | 26edo's "minor sixth" is very close to phi (i. e., the golden ratio). |