Patent val: Difference between revisions
Wikispaces>FREEZE No edit summary |
added the term edomapping for val |
||
Line 4: | Line 4: | ||
=Introduction= | =Introduction= | ||
The patent val for some EDO is the val that you obtain by simply finding the closest rounded-off approximation to each prime in the tuning. For example, the patent val for 17-EDO is <17 27 39|, indicating that the closest mapping for 2/1 is 17 steps, the closest mapping for 3/1 is 27 steps, and the closest mapping for 5/1 is 39 steps. This means, if octaves are pure, that 3/2 is 706 cents, which is what you get if you round off 3/2 to the closest location in 17-equal, and that 5/4 is 353 cents, which is what you get is you round off 5/4 to the closest location in 17-equal. This val can be extended to the case where the number of steps in an octave is a real number rather than an integer; this is called a generalized patent val, or GPV. For instance the 7-limit generalized patent val for 16.9 is <17 27 39 47|, since 16.9 * log2(7) = 47.444, which rounds down to 47. | The patent val (aka nearest edomapping) for some EDO is the val that you obtain by simply finding the closest rounded-off approximation to each prime in the tuning. For example, the patent val for 17-EDO is <17 27 39|, indicating that the closest mapping for 2/1 is 17 steps, the closest mapping for 3/1 is 27 steps, and the closest mapping for 5/1 is 39 steps. This means, if octaves are pure, that 3/2 is 706 cents, which is what you get if you round off 3/2 to the closest location in 17-equal, and that 5/4 is 353 cents, which is what you get is you round off 5/4 to the closest location in 17-equal. This val can be extended to the case where the number of steps in an octave is a real number rather than an integer; this is called a generalized patent val, or GPV. For instance the 7-limit generalized patent val for 16.9 is <17 27 39 47|, since 16.9 * log2(7) = 47.444, which rounds down to 47. | ||
You may prefer to use the <17 27 40| val as the 5-limit 17-equal val instead, which rather than <17 27 39| treats 424 cents as 5/4. This val has lower Tenney-Euclidean error than the 17-EDO patent val. However, while <17 27 39| may not necessarily be the "best" val for 17-equal for all purposes, it is the obvious, or "patent" val, that you get by naively rounding primes off within the EDO and taking no further considerations into account. However, <17 27 40| is the generalized patent val for 17.1, since 17.1 * log2(5) = 39.705, which rounds up to 40. | There are other vals or edomappings besides the patent or nearest one. You may prefer to use the <17 27 40| val as the 5-limit 17-equal val instead, which rather than <17 27 39| treats 424 cents as 5/4. This val has lower Tenney-Euclidean error than the 17-EDO patent val. However, while <17 27 39| may not necessarily be the "best" val for 17-equal for all purposes, it is the obvious, or "patent" val, that you get by naively rounding primes off within the EDO and taking no further considerations into account. However, <17 27 40| is the generalized patent val for 17.1, since 17.1 * log2(5) = 39.705, which rounds up to 40. | ||
=Further explanation= | =Further explanation= |