User:Lhearne/Extra-Diatonic Intervals: Difference between revisions

having to make interum edits because an issue keeps popping up where the curser will jump to another line in editing...
No edit summary
Line 46: Line 46:


=== Dave Keenan's system ===
=== Dave Keenan's system ===
In 2016 Dave Keenan proposed an alternative generalised [http://dkeenan.com/Music/EdoIntervalNames.pdf microtonal interval naming system for edos]. He uses the familiar prefixes 'sub', 'super', 'supra' and 'neutral'. His scheme is based on the diatonic scale, however the diatonic interval names are not defined by their position in a cycle of fifths like is Sagispeak. In Keenan's system the ET's best 3/2 is first labelled P5, and the fourth P4. The interval half-way between the tonic and fifth is labelled the neutral third, or 'N3', and halfway between the fourth and the octave N6. Then the interval a perfect fifth larger than N3 is labelled N7, and the interval a fifth smaller than N6 labelled N2. The nuetral intervals then lie either at a step of the ET, or between two steps. After this the remaining interval names are decided based on the distance they lie in pitch from the 7 labelled intervals, which make up the ''Neutral scale'', P1 N2 N3 P4 P5 N6 N7, which, like the diatonic, is an MOS scale, which may be labelled [[Neutral7|Neutral[7]]] 3|3 using [[Modal UDP Notation|Modal UPD notation]]. To name an interval in an edo, the number of steps of 72edo that most closely approximate the size of the interval difference from a note of the neutral scale is first found. Then the prefix corresponding to that number of steps of 72edo is applied to the interval name. The following chart details this process (can't load the chart :( ). An interval just smaller than a major third in Keenan's system is labelled a ''narrow major third'', and an interval just wider than a 6/5 minor third a ''wide minor third'', however he notes that 'narrow' and 'wide' are only necessary in edos greater than 31.  
In 2016 Dave Keenan proposed an alternative generalised [http://dkeenan.com/Music/EdoIntervalNames.pdf microtonal interval naming system for edos]. He uses the familiar prefixes 'sub', 'super', 'supra' and 'neutral'. His scheme is based on the diatonic scale, however the diatonic interval names are not defined by their position in a cycle of fifths like is Sagispeak. In Keenan's system the ET's best 3/2 is first labelled P5, and the fourth P4. The interval half-way between the tonic and fifth is labelled the neutral third, or 'N3', and halfway between the fourth and the octave N6. Then the interval a perfect fifth larger than N3 is labelled N7, and the interval a fifth smaller than N6 labelled N2. The neutral intervals then lie either at a step of the ET, or between two steps. After this the remaining interval names are decided based on the distance they lie in pitch from the 7 labelled intervals, which make up the ''Neutral scale'', P1 N2 N3 P4 P5 N6 N7, which, like the diatonic, is an MOS scale, which may be labelled [[Neutral7|Neutral[7]]] 3|3 using [[Modal UDP Notation|Modal UPD notation]]. To name an interval in an edo, the number of steps of 72edo that most closely approximate the size of the interval difference from a note of the neutral scale is first found. Then the prefix corresponding to that number of steps of 72edo is applied to the interval name. The following chart details this process (can't load the chart :( ). An interval just smaller than a major third in Keenan's system is labelled a ''narrow major third'', and an interval just wider than a 6/5 minor third a ''wide minor third'', however he notes that 'narrow' and 'wide' are only necessary in edos greater than 31.  


Keenan's system is an elegant way to keep the 'major 3rd' label for 5/4, where labels depend on the size of the best fifth, however it suffers from it's applicability only to edos, and that it does not conserve interval arithmetic. Another potentially undesirable result of the system is that the major second approximates 10/9, and a ''wide major second'' 9/8, where as 9/8 is almost always considered a major second, and 10/9 often a narrow or small major second. One such system that considers 10/9 a narrow major second, is that of Aaron Hunt.  
Keenan's system is an elegant way to keep the 'major 3rd' label for 5/4, where labels depend on the size of the best fifth, however it suffers from it's applicability only to edos, and that it does not conserve interval arithmetic. Another potentially undesirable result of the system is that the major second approximates 10/9, and a ''wide major second'' 9/8, where as 9/8 is almost always considered a major second, and 10/9 often a narrow or small major second. One such system that considers 10/9 a narrow major second, is that of Aaron Hunt.  
=== Measurement based systems ===
Microtonal theorist [[Aaron Andrew Hunt]] devised [http://musictheory.zentral.zone/huntsystem4.html the Hunt system], which includes interval name assignments for JI and edos based on 41edo. Compared to Keenan's 72 interval names, Aaron's system includes 41. His system is based directly on 41edo, and unlike Keenan's system, interval are given the name of the closest step of 41edo, and no account is taken of the size of the edos fifth. In 41edo, Major, minor, augmented and diminished intervals are those obtained through the approximately Pythagorean cycle of fifths. Intervals one step of 41edo above these are given the prefix 'small', one step larger are given the prefix 'large', two steps smaller the prefix 'narrow' and two larger the prefix 'wide'. As a result, 5/4 is labelled a 'small major 3rd', or SM3 (not to be confused with a super major third, a label that does not exist in this system).
Neo-medieval musicians and early music historian and theorist [[Margo Schulter]] described her own [http://www.bestii.com/~mschulter/IntervalSpectrumRegions.txt interval naming scheme] built on approximations to JI intervals. Each interval names corresponds to an approximate size, and no particular edo is referenced. In her scheme middle major thirds range in size from 400-423 cents, and small major thirds from 372-400c. 5/4 is labelled a small major third, 81/64 a middle major third and 9/7 a large major third. Margo's scheme includes small, middle and large varieties of major, minor and neutral 2nds, 3rds, 6ths, 7ths; perfect fourth and fifths; and tritones, as well as a sub fifth and super fourth a dieses and comma and an octave less dieses and comma and ''interseptimals'', which correspond to intermediates, her name referencing the fact that they may each approximate two ratios of 7.
In Hunt's system when used in 41edo or JI diatonic interval arithmetic is conserved, but in other tunings it may not be, and Margo's system may not conserve diatonic interval arithmetic either. Both systems may be applied to arbitrary tunings, but the same intervals (defined, perhaps by a MOS scale) may not be given the same interval names across different tunings.
== Premise: ==
== Premise: ==
Extra-diatonic names should be simple, generalisable, widely applicable, backwards compatible with standard diatonic notation and reflecting current informal practice as closely as possible. Extra-diatonic interval names are fifth based; extended from the familiar major, minor and perfect interval names so that diatonic interval arithmetic is conserved. ‘M’, ‘m’, and ‘P’ remain the short-hand for major, minor and perfect. ‘A’ and ‘d’ for Augmented and diminished may also be used in the familiar way. In cases where the chroma (the chromatic semitone, or augmented unison) is represented by multiple steps in the tuning the prefix ‘super’ raises major and perfect intervals by a single step while ‘sub’ lowers minor and perfect intervals, with short-hand ‘S’ and ‘s’. ‘S’ and ‘s’ may also be used to raise minor and lower major intervals respectively, reflecting occasion practice. In this case ‘S’ is short-hand for ‘supra’, and 's' for 'small'. They may also be used to raise or lower diminished and augmented intervals. In this way this scheme is equivalent thus far to Ups and Downs notation, where ‘^’ or ‘up’ corresponds to ‘S’, ‘super’ or ‘supra’ and ‘v’ or ‘down’ to ‘sub’ or 'small' .
Extra-diatonic names should be simple, generalisable, widely applicable, backwards compatible with standard diatonic notation and reflecting current informal practice as closely as possible. Extra-diatonic interval names are fifth based; extended from the familiar major, minor and perfect interval names so that diatonic interval arithmetic is conserved. ‘M’, ‘m’, and ‘P’ remain the short-hand for major, minor and perfect. ‘A’ and ‘d’ for Augmented and diminished may also be used in the familiar way. In cases where the chroma (the chromatic semitone, or augmented unison) is represented by multiple steps in the tuning the prefix ‘super’ raises major and perfect intervals by a single step while ‘sub’ lowers minor and perfect intervals, with short-hand ‘S’ and ‘s’. ‘S’ and ‘s’ may also be used to raise minor and lower major intervals respectively, reflecting occasion practice. In this case ‘S’ is short-hand for ‘supra’, and 's' for 'small'. They may also be used to raise or lower diminished and augmented intervals. In this way this scheme is equivalent thus far to Ups and Downs notation, where ‘^’ or ‘up’ corresponds to ‘S’, ‘super’ or ‘supra’ and ‘v’ or ‘down’ to ‘sub’ or 'small' .