|
|
Line 1: |
Line 1: |
| <h2>IMPORTED REVISION FROM WIKISPACES</h2>
| | Having 9 large steps and 2 small steps, this MOS family is the simplest tritave-equivalent scale using an "ordinary" ~5:3 as a generator. Of course, it is on the extremely flat end of what is "ordinary", being the same size as a neutral sixth. Coincidentally, its categorical name in this scale happens to be "sixth" also, just not in the "ordinary" diatonic sense of the name. Because this "sixth" is so flat, "sixths" in the range of propriety lead, in three steps, when tritave reduced, into the Mavila continuum and the bottom of the syntonic continuum. |
| This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br>
| |
| : This revision was by author [[User:xenwolf|xenwolf]] and made on <tt>2016-12-29 12:36:41 UTC</tt>.<br>
| |
| : The original revision id was <tt>602895540</tt>.<br>
| |
| : The revision comment was: <tt>removed visual-editor garbage</tt><br>
| |
| The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br>
| |
| <h4>Original Wikitext content:</h4>
| |
| <div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;white-space: pre-wrap ! important" class="old-revision-html">Having 9 large steps and 2 small steps, this MOS family is the simplest tritave-equivalent scale using an "ordinary" ~5:3 as a generator. Of course, it is on the extremely flat end of what is "ordinary", being the same size as a neutral sixth. Coincidentally, its categorical name in this scale happens to be "sixth" also, just not in the "ordinary" diatonic sense of the name. Because this "sixth" is so flat, "sixths" in the range of propriety lead, in three steps, when tritave reduced, into the Mavila continuum and the bottom of the syntonic continuum.
| |
|
| |
|
| ||||||||||||||~ Generator ||~ cents ||~ L ||~ s ||~ 3g ||~ Notes ||
| | {| class="wikitable" |
| ||= 4\9 ||= ||= ||= ||= ||= ||= ||= 845.313 ||= 211.328 ||= 0.00 ||= 633.985 ||= L=1 s=0 ||
| | |- |
| ||= ||= ||= ||= ||= ||= ||= 29\65 ||= 848.5645 ||= 204.826 ||= 29.261 ||= 643.739 ||= L=7 s=1 ||
| | ! colspan="7" | Generator |
| ||= ||= ||= ||= ||= ||= 25\56 ||= ||= 849.087 ||= 203.78 ||= 33.9635 ||= 645.306 ||= L=6 s=1 ||
| | ! | cents |
| ||= ||= ||= ||= ||= ||= ||= 46\103 ||= 849.417 ||= 203.121 ||= 36.931 ||= 646.295 ||= ||
| | ! | L |
| ||= ||= ||= ||= ||= 21\47 ||= ||= ||= 849.81 ||= 202.336 ||= 40.467 ||= 647.474 ||= L=5 s=1 ||
| | ! | s |
| ||= ||= ||= ||= ||= ||= ||= 59\132 ||= 850.116 ||= 201.7225 ||= 43.226 ||= 648.394 ||= ||
| | ! | 3g |
| ||= ||= ||= ||= ||= ||= 38\85 ||= ||= 850.286 ||= 201.383 ||= 44.752 ||= 648.902 ||= ||
| | ! | Notes |
| ||= ||= ||= ||= ||= ||= ||= 55\123 ||= 850.468 ||= 201.02 ||= 46.309 ||= 649.448 ||= ||
| | |- |
| ||= ||= ||= ||= 17\38 ||= ||= ||= ||= 850.875 ||= 200.206 ||= 50.051 ||= 650.669 ||= L=4 s=1 ||
| | | style="text-align:center;" | 4\9 |
| ||= ||= ||= ||= ||= ||= ||= 64\143 ||= 851.225 ||= 199.506 ||= 53.2015 ||= 651.719 ||= ||
| | | style="text-align:center;" | |
| ||= ||= ||= ||= ||= ||= 47\105 ||= ||= 851.351 ||= 199.252 ||= 54.342 ||= 652.099 ||= ||
| | | style="text-align:center;" | |
| ||= ||= ||= ||= ||= ||= ||= 77\172 ||= 851.457 ||= 199.042 ||= 55.289 ||= 652.415 ||= ||
| | | style="text-align:center;" | |
| ||= ||= ||= ||= ||= 30\67 ||= ||= ||= 851.622 ||= 198.712 ||= 56.775 ||= 652.91 ||= L=7 s=2 ||
| | | style="text-align:center;" | |
| ||= ||= ||= ||= ||= ||= ||= 73\163 ||= 851.796 ||= 198.363 ||= 58.342 ||= 653.432 ||= ||
| | | style="text-align:center;" | |
| ||= ||= ||= ||= ||= ||= 43\96 ||= ||= 851.917 ||= 198.12 ||= 59.436 ||= 653.797 ||= ||
| | | style="text-align:center;" | |
| ||= ||= ||= ||= ||= ||= ||= 56\125 ||= 852.075 ||= 197.803 ||= 60.863 ||= 654.2725 ||= ||
| | | style="text-align:center;" | 845.313 |
| ||= ||= ||= 13\29 ||= ||= ||= ||= ||= 852.6005 ||= 196.754 ||= 65.585 ||= 655.847 ||= L=3 s=1 ||
| | | style="text-align:center;" | 211.328 |
| ||= ||= ||= ||= ||= ||= ||= 61\136 ||= 853.083 ||= 195.7895 ||= 69.925 ||= 657.293 ||= ||
| | | style="text-align:center;" | 0.00 |
| ||= ||= ||= ||= ||= ||= 48\107 ||= ||= 853.2135 ||= 195.528 ||= 71.101 ||= 657.685 ||= ||
| | | style="text-align:center;" | 633.985 |
| ||= ||= ||= ||= ||= ||= ||= 83\185 ||= 853.3095 ||= 195.336 ||= 71.966 ||= 657.974 ||= ||
| | | style="text-align:center;" | L=1 s=0 |
| ||= ||= ||= ||= ||= 35\78 ||= ||= ||= 853.441 ||= 195.072 ||= 73.152 ||= 658.369 ||= ||
| | |- |
| ||= ||= ||= ||= ||= ||= ||= 92\205 ||= 853.56 ||= 194.834 ||= 74.223 ||= 658.726 ||= ||
| | | style="text-align:center;" | |
| ||= ||= ||= ||= ||= ||= 57\127 ||= ||= 853.633 ||= 194.688 ||= 74.88 ||= 658.945 ||= ||
| | | style="text-align:center;" | |
| ||= ||= ||= ||= ||= ||= ||= 79\176 ||= 853.718 ||= 194.518 ||= 75.646 ||= 659.20 ||= ||
| | | style="text-align:center;" | |
| ||= ||= ||= ||= 22\49 ||= ||= ||= ||= 853.939 ||= 194.077 ||= 77.631 ||= 659.862 ||= L=5 s=2 ||
| | | style="text-align:center;" | |
| ||= ||= ||= ||= ||= ||= ||= 75\167 ||= 854.171 ||= 193.588 ||= 79.722 ||= 660.559 ||= ||
| | | style="text-align:center;" | |
| ||= ||= ||= ||= ||= ||= 53\118 ||= ||= 854.268 ||= 193.419 ||= 80.591 ||= 660.849 ||= ||
| | | style="text-align:center;" | |
| ||= ||= ||= ||= ||= ||= ||= 84\187 ||= 854.354 ||= 193.245 ||= 81.367 ||=
| | | style="text-align:center;" | 29\65 |
| | | style="text-align:center;" | 848.5645 |
| | | style="text-align:center;" | 204.826 |
| | | style="text-align:center;" | 29.261 |
| | | style="text-align:center;" | 643.739 |
| | | style="text-align:center;" | L=7 s=1 |
| | |- |
| | | style="text-align:center;" | |
| | | style="text-align:center;" | |
| | | style="text-align:center;" | |
| | | style="text-align:center;" | |
| | | style="text-align:center;" | |
| | | style="text-align:center;" | 25\56 |
| | | style="text-align:center;" | |
| | | style="text-align:center;" | 849.087 |
| | | style="text-align:center;" | 203.78 |
| | | style="text-align:center;" | 33.9635 |
| | | style="text-align:center;" | 645.306 |
| | | style="text-align:center;" | L=6 s=1 |
| | |- |
| | | style="text-align:center;" | |
| | | style="text-align:center;" | |
| | | style="text-align:center;" | |
| | | style="text-align:center;" | |
| | | style="text-align:center;" | |
| | | style="text-align:center;" | |
| | | style="text-align:center;" | 46\103 |
| | | style="text-align:center;" | 849.417 |
| | | style="text-align:center;" | 203.121 |
| | | style="text-align:center;" | 36.931 |
| | | style="text-align:center;" | 646.295 |
| | | style="text-align:center;" | |
| | |- |
| | | style="text-align:center;" | |
| | | style="text-align:center;" | |
| | | style="text-align:center;" | |
| | | style="text-align:center;" | |
| | | style="text-align:center;" | 21\47 |
| | | style="text-align:center;" | |
| | | style="text-align:center;" | |
| | | style |