Prime harmonic series: Difference between revisions

Wikispaces>danterosati
**Imported revision 176981401 - Original comment: **
Wikispaces>danterosati
**Imported revision 176983675 - Original comment: **
Line 1: Line 1:
<h2>IMPORTED REVISION FROM WIKISPACES</h2>
<h2>IMPORTED REVISION FROM WIKISPACES</h2>
This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br>
This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br>
: This revision was by author [[User:danterosati|danterosati]] and made on <tt>2010-11-05 22:24:47 UTC</tt>.<br>
: This revision was by author [[User:danterosati|danterosati]] and made on <tt>2010-11-05 22:47:52 UTC</tt>.<br>
: The original revision id was <tt>176981401</tt>.<br>
: The original revision id was <tt>176983675</tt>.<br>
: The revision comment was: <tt></tt><br>
: The revision comment was: <tt></tt><br>
The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br>
The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br>
Line 27: Line 27:
|| 12 (1,3,5,7,11,13,17,19,23,29,31,37) || 1/1, 17/16, 37/32, 19/16, 5/4, 11/8, 23/16, 3/2, 13/8, 7/4, 29/16, 31/16 (dodecatonic) ||
|| 12 (1,3,5,7,11,13,17,19,23,29,31,37) || 1/1, 17/16, 37/32, 19/16, 5/4, 11/8, 23/16, 3/2, 13/8, 7/4, 29/16, 31/16 (dodecatonic) ||


Of course, as in scales derived from the full series, there is nothing that says one must start at the beginning of the series or include consecutive members only. The possibilities are endless.</pre></div>
Of course, as in scales derived from the full series, there is nothing that says one must start at the beginning of the series or include consecutive members only. The possibilities are endless.
&lt;span style="color: #aaaaaa;"&gt;
&lt;/span&gt;
----
 
 
Let’s look more closely at the prime dodecatonic scale. It can also be notated thusly:
 
32:34:37:38:40:44:46:48:52:56:58:62:(64)
 
This way, it is easy to compute the step sizes:
 
|| 34/32
(17/16) || 37/34 || 38/37 || 40/38
(20/19) || 44/40
(11/10) || 46/44
(23/22) || 48/46
(24/23) || 52/48
(13/12) || 56/52
(14/13) || 58/56
(29/28) || 62/58
(31/29) || 64/62
(32/31) ||
|| 104.96 || 146.39 || 46.17 || 88.8 || 165 || 76.96 || 73.68 || 138.57 || 128.3 || 60.75 || 115.46 || 54.97 ||</pre></div>
<h4>Original HTML content:</h4>
<h4>Original HTML content:</h4>
<div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;width:200%;white-space: pre-wrap ! important" class="old-revision-html">&lt;html&gt;&lt;head&gt;&lt;title&gt;The Prime Harmonic Series&lt;/title&gt;&lt;/head&gt;&lt;body&gt;The &lt;strong&gt;acoustic prime harmonic series&lt;/strong&gt; is similar to the set of prime numbers, except that it begins with 1, and skips 2 because of octave equivalence : 1,3,5,7,11,13…etc.&lt;br /&gt;
<div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;width:200%;white-space: pre-wrap ! important" class="old-revision-html">&lt;html&gt;&lt;head&gt;&lt;title&gt;The Prime Harmonic Series&lt;/title&gt;&lt;/head&gt;&lt;body&gt;The &lt;strong&gt;acoustic prime harmonic series&lt;/strong&gt; is similar to the set of prime numbers, except that it begins with 1, and skips 2 because of octave equivalence : 1,3,5,7,11,13…etc.&lt;br /&gt;
Line 120: Line 143:


&lt;br /&gt;
&lt;br /&gt;
Of course, as in scales derived from the full series, there is nothing that says one must start at the beginning of the series or include consecutive members only. The possibilities are endless.&lt;/body&gt;&lt;/html&gt;</pre></div>
Of course, as in scales derived from the full series, there is nothing that says one must start at the beginning of the series or include consecutive members only. The possibilities are endless.&lt;br /&gt;
&lt;span style="color: #aaaaaa;"&gt;&lt;br /&gt;
&lt;/span&gt;&lt;br /&gt;
&lt;hr /&gt;
&lt;br /&gt;
&lt;br /&gt;
Let’s look more closely at the prime dodecatonic scale. It can also be notated thusly:&lt;br /&gt;
&lt;br /&gt;
32:34:37:38:40:44:46:48:52:56:58:62:(64)&lt;br /&gt;
&lt;br /&gt;
This way, it is easy to compute the step sizes:&lt;br /&gt;
&lt;br /&gt;
 
 
&lt;table class="wiki_table"&gt;
    &lt;tr&gt;
        &lt;td&gt;34/32 &lt;br /&gt;
(17/16)&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;37/34&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;38/37&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;40/38&lt;br /&gt;
(20/19)&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;44/40 &lt;br /&gt;
(11/10)&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;46/44 &lt;br /&gt;
(23/22)&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;48/46 &lt;br /&gt;
(24/23)&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;52/48 &lt;br /&gt;
(13/12)&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;56/52 &lt;br /&gt;
(14/13)&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;58/56 &lt;br /&gt;
(29/28)&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;62/58 &lt;br /&gt;
(31/29)&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;64/62 &lt;br /&gt;
(32/31)&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
    &lt;tr&gt;
        &lt;td&gt;104.96&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;146.39&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;46.17&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;88.8&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;165&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;76.96&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;73.68&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;138.57&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;128.3&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;60.75&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;115.46&lt;br /&gt;
&lt;/td&gt;
        &lt;td&gt;54.97&lt;br /&gt;
&lt;/td&gt;
    &lt;/tr&gt;
&lt;/table&gt;
 
&lt;/body&gt;&lt;/html&gt;</pre></div>