Prime harmonic series: Difference between revisions

Wikispaces>xenwolf
**Imported revision 239298801 - Original comment: **
Wikispaces>guest
**Imported revision 411572484 - Original comment: **
Line 1: Line 1:
<h2>IMPORTED REVISION FROM WIKISPACES</h2>
<h2>IMPORTED REVISION FROM WIKISPACES</h2>
This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br>
This is an imported revision from Wikispaces. The revision metadata is included below for reference:<br>
: This revision was by author [[User:xenwolf|xenwolf]] and made on <tt>2011-06-29 07:34:21 UTC</tt>.<br>
: This revision was by author [[User:guest|guest]] and made on <tt>2013-03-03 14:24:37 UTC</tt>.<br>
: The original revision id was <tt>239298801</tt>.<br>
: The original revision id was <tt>411572484</tt>.<br>
: The revision comment was: <tt></tt><br>
: The revision comment was: <tt></tt><br>
The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br>
The revision contents are below, presented both in the original Wikispaces Wikitext format, and in HTML exactly as Wikispaces rendered it.<br>
Line 52: Line 52:
giving these step sizes:
giving these step sizes:


|| 34/32  
|| 34/32
(17/16) || 37/34 || 38/37 || 40/38
(17/16) || 37/34 || 38/37 || 40/38
(20/19) || 44/40  
(20/19) || 44/40
(11/10) || 46/44  
(11/10) || 46/44
(23/22) || 48/46  
(23/22) || 48/46
(24/23) || 52/48  
(24/23) || 52/48
(13/12) || 56/52  
(13/12) || 56/52
(14/13) || 58/56  
(14/13) || 58/56
(29/28) || 62/58  
(29/28) || 62/58
(31/29) || 64/62  
(31/29) || 64/62
(32/31) ||
(32/31) ||
|| 104.96 || 146.39 || 46.17 || 88.8 || 165 || 76.96 || 73.68 || 138.57 || 128.3 || 60.75 || 115.46 || 54.97 ||
|| 104.96 || 146.39 || 46.17 || 88.8 || 165 || 76.96 || 73.68 || 138.57 || 128.3 || 60.75 || 115.46 || 54.97 ||
Line 67: Line 67:
----
----


Any segment of the prime harmonic series can be used "as is" as musical material.  
Any segment of the prime harmonic series can be used "as is" as musical material.


The step sizes of the series itself exhibit an interesting variety, including the phenomena of [[http://en.wikipedia.org/wiki/Twin_prime|twin primes]] which provide for small steps which contrast with the wider steps elsewhere in the series:
The step sizes of the series itself exhibit an interesting variety, including the phenomena of [[http://en.wikipedia.org/wiki/Twin_prime|twin primes]] which provide for small steps which contrast with the wider steps elsewhere in the series:
Line 83: Line 83:
&lt;span style="font-size: 90%;"&gt;Because the lowest partial is 17, there are no familiar lower prime limit intervals like octaves (2/1), fifths (3/2), thirds (5/4), etc. Nevertheless, some intervals between higher primes approximate the lower prime limit intervals (e.g. 61/31 is very close to an octave), without of course reproducing them exactly." [[http://users.rcn.com/dante.interport//justguitar.html|(original page source)]]&lt;/span&gt;
&lt;span style="font-size: 90%;"&gt;Because the lowest partial is 17, there are no familiar lower prime limit intervals like octaves (2/1), fifths (3/2), thirds (5/4), etc. Nevertheless, some intervals between higher primes approximate the lower prime limit intervals (e.g. 61/31 is very close to an octave), without of course reproducing them exactly." [[http://users.rcn.com/dante.interport//justguitar.html|(original page source)]]&lt;/span&gt;


&lt;span style="font-size: 90%;"&gt;[[http://www.youtube.com/watch?v=tP9iafbjlOw|"Tarkovsky's Mirror" for prime guitar by Dante Rosati]]&lt;/span&gt;</pre></div>
&lt;span style="font-size: 90%;"&gt;////[[http://www.youtube.com/watch?v=tP9iafbjlOw|"Tarkovsky's Mirror" for prime guitar by Dante Rosati]]////&lt;/span&gt;</pre></div>
<h4>Original HTML content:</h4>
<h4>Original HTML content:</h4>
<div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;width:200%;white-space: pre-wrap ! important" class="old-revision-html">&lt;html&gt;&lt;head&gt;&lt;title&gt;The Prime Harmonic Series&lt;/title&gt;&lt;/head&gt;&lt;body&gt;The &lt;strong&gt;acoustic prime harmonic series&lt;/strong&gt; is similar to the set of &lt;a class="wiki_link" href="/prime%20numbers"&gt;prime numbers&lt;/a&gt;, except that it begins with 1, and skips 2 because of &lt;a class="wiki_link" href="/octave%20equivalence"&gt;octave equivalence&lt;/a&gt; : 1, 3, 5, 7, 11, 13 etc.&lt;br /&gt;
<div style="width:100%; max-height:400pt; overflow:auto; background-color:#f8f9fa; border: 1px solid #eaecf0; padding:0em"><pre style="margin:0px;border:none;background:none;word-wrap:break-word;width:200%;white-space: pre-wrap ! important" class="old-revision-html">&lt;html&gt;&lt;head&gt;&lt;title&gt;The Prime Harmonic Series&lt;/title&gt;&lt;/head&gt;&lt;body&gt;The &lt;strong&gt;acoustic prime harmonic series&lt;/strong&gt; is similar to the set of &lt;a class="wiki_link" href="/prime%20numbers"&gt;prime numbers&lt;/a&gt;, except that it begins with 1, and skips 2 because of &lt;a class="wiki_link" href="/octave%20equivalence"&gt;octave equivalence&lt;/a&gt; : 1, 3, 5, 7, 11, 13 etc.&lt;br /&gt;
Line 240: Line 240:
&lt;table class="wiki_table"&gt;
&lt;table class="wiki_table"&gt;
     &lt;tr&gt;
     &lt;tr&gt;
         &lt;td&gt;34/32 &lt;br /&gt;
         &lt;td&gt;34/32&lt;br /&gt;
(17/16)&lt;br /&gt;
(17/16)&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
Line 250: Line 250:
(20/19)&lt;br /&gt;
(20/19)&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;44/40 &lt;br /&gt;
         &lt;td&gt;44/40&lt;br /&gt;
(11/10)&lt;br /&gt;
(11/10)&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;46/44 &lt;br /&gt;
         &lt;td&gt;46/44&lt;br /&gt;
(23/22)&lt;br /&gt;
(23/22)&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;48/46 &lt;br /&gt;
         &lt;td&gt;48/46&lt;br /&gt;
(24/23)&lt;br /&gt;
(24/23)&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;52/48 &lt;br /&gt;
         &lt;td&gt;52/48&lt;br /&gt;
(13/12)&lt;br /&gt;
(13/12)&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;56/52 &lt;br /&gt;
         &lt;td&gt;56/52&lt;br /&gt;
(14/13)&lt;br /&gt;
(14/13)&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;58/56 &lt;br /&gt;
         &lt;td&gt;58/56&lt;br /&gt;
(29/28)&lt;br /&gt;
(29/28)&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;62/58 &lt;br /&gt;
         &lt;td&gt;62/58&lt;br /&gt;
(31/29)&lt;br /&gt;
(31/29)&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
         &lt;td&gt;64/62 &lt;br /&gt;
         &lt;td&gt;64/62&lt;br /&gt;
(32/31)&lt;br /&gt;
(32/31)&lt;br /&gt;
&lt;/td&gt;
&lt;/td&gt;
Line 306: Line 306:
&lt;hr /&gt;
&lt;hr /&gt;
&lt;br /&gt;
&lt;br /&gt;
Any segment of the prime harmonic series can be used &amp;quot;as is&amp;quot; as musical material. &lt;br /&gt;
Any segment of the prime harmonic series can be used &amp;quot;as is&amp;quot; as musical material.&lt;br /&gt;
&lt;br /&gt;
&lt;br /&gt;
The step sizes of the series itself exhibit an interesting variety, including the phenomena of &lt;a class="wiki_link_ext" href="http://en.wikipedia.org/wiki/Twin_prime" rel="nofollow"&gt;twin primes&lt;/a&gt; which provide for small steps which contrast with the wider steps elsewhere in the series:&lt;br /&gt;
The step sizes of the series itself exhibit an interesting variety, including the phenomena of &lt;a class="wiki_link_ext" href="http://en.wikipedia.org/wiki/Twin_prime" rel="nofollow"&gt;twin primes&lt;/a&gt; which provide for small steps which contrast with the wider steps elsewhere in the series:&lt;br /&gt;